HYERS-ULAM STABILITY OF TERNARY (σ, τ, ξ)-DERIVATIONS ON C^{*}-TERNARY ALGEBRAS: REVISITED

Eon Wha Shim ${ }^{\text {a }}$, Madjid Eshaghi Gordji ${ }^{\text {b }}$ and Jung Rye Lee ${ }^{\text {c,* }}$
Abstract. In [1], the definition of C^{*}-Lie ternary (σ, τ, ξ)-derivation is not welldefined and so the results of $\left[1\right.$, Section 4] on C^{*}-Lie ternary (σ, τ, ξ)-derivations should be corrected.

1. Hyers-Ulam Stability of C^{*}-Lie Ternary (σ, τ, ξ)-derivations

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \rightarrow[x y z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x y[z w v]]=$ $[x[w z y] v]=[[x y z] w v]$, and satisfies $\|[x y z]\| \leq\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x x x]\|=\|x\|^{3}$.

Definition 1.1 ([1]). Let A be a C^{*}-ternary algebra and let $\sigma, \tau, \xi: A \rightarrow A$ be \mathbb{C}-linear mappings. A \mathbb{C}-linear mapping $L: A \rightarrow A$ is called a C^{*}-Lie ternary (σ, τ, ξ)-derivation if

$$
L([x y z])=[L(x) y z]_{(\sigma, \tau, \xi)}+[L(y) x z]_{(\sigma, \tau, \xi)}+[L(z) y x]_{(\sigma, \tau, \xi)}
$$

for all $x, y, z \in A$, where $[x y z]_{(\sigma, \tau, \xi)}=x \tau(y) \xi(z)-\sigma(z) \tau(y) x$.
The x - and z-variables of the left side are \mathbb{C}-linear and the y-variable of the left side is conjugate \mathbb{C}-linear. But the x-variable of the right side is not \mathbb{C}-linear and the y-variable of the right side is not conjugate \mathbb{C}-linear. Furthermore, the y-variable of the right side in the definition of $[x y z]$ is \mathbb{C}-linear. But the y-variable of the left side is conjugate \mathbb{C}-linear. Thus we correct the definition of C^{*}-Lie ternary (σ, τ, ξ)-derivation as follows.

[^0]Definition 1.2. Let A be a C^{*}-ternary algebra and let $\sigma, \tau, \xi: A \rightarrow A$ be \mathbb{C}-linear mappings. A \mathbb{C}-linear mapping $L: A \rightarrow A$ is called a C^{*}-Lie ternary (σ, τ, ξ) derivation if

$$
L([x y z])=[L(x) y z]_{(\sigma, \tau, \xi)}+\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}+[L(z) y x]_{(\sigma, \tau, \xi)}
$$

for all $x, y, z \in A$, where $[x y z]_{(\sigma, \tau, \xi)}=x \tau(y)^{*} \xi(z)-\sigma(z) \tau(y)^{*} x$.
Throughout this paper, assume that A is a C^{*}-ternary with norm $\|\cdot\|$, and that $\sigma, \tau, \xi: A \rightarrow A$ are \mathbb{C}-linear mappings. Let q be a positive rational number.

We prove the Hyers-Ulam stability of C^{*}-Lie ternary (σ, τ, ξ)-derivations on C^{*} ternary algebras, associated with the Euler-Lagrange type additive mapping.

Theorem 1.3. Let $n \in \mathbb{N}$. Assume that $r>3$ if $n q>1$ and that $0<r<1$ if $n q<1$. Let θ be a positive real number, and let $f: A \rightarrow A$ be an odd mapping for which there exist mappings $g, h, k: A \rightarrow A$ with $g(0)=h(0)=k(0)=0$ satisfying (2.1), (2.3)-(2.5) of [1] and

$$
\begin{align*}
& \left\|f([x y z])-[f(x) y z]_{(g, h, k)}-\left[f(y)^{*} x^{*} z\right]_{(g, h, k)}-[f(z) y x]_{(g, h, k)}\right\| \tag{1.1}\\
& \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
\end{align*}
$$

for all $x, y, z \in A$. Then there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique C^{*}-Lie ternary (σ, τ, ξ)-derivation $L: A \rightarrow A$ satisfying (2.6)-(2.8) of [1] and

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\theta}{(n q)^{r}-n q}\|x\|^{r} \tag{1.2}
\end{equation*}
$$

for all $x \in A$.
Proof. By the same reasoning as in the proof of [1, Theorem 2.1], one can show that there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique \mathbb{C}-linear mapping $L: A \rightarrow A$ satisfying (2.6)-(2.8) of [1] and (1.2). The mapping $L: A \rightarrow A$ is defined by

$$
L(x):=\lim _{m \rightarrow \infty}(n q)^{m} f\left(\frac{x}{(n q)^{m}}\right)
$$

for all $x \in A$.
It follows from (1.1) that

$$
\begin{aligned}
& \left\|L([x y z])-[L(x) y z]_{(\sigma, \tau, \xi)}-\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}-[L(z) y x]_{(\sigma, \tau, \xi)}\right\| \\
& =\lim _{m \rightarrow \infty}(n q)^{3 m}\left(\| f\left(\frac{[x y z]}{(n q)^{3 m}}\right)-\left[f\left(\frac{x}{(n q)^{m}}\right) \frac{y}{(n q)^{m}} \frac{z}{(n q)^{m}}\right]_{(g, h, k)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\left[f\left(\frac{y}{(n q)^{m}}\right)^{*} \frac{x^{*}}{(n q)^{m}} \frac{z}{(n q)^{m}}\right]_{(g, h, k)}-\left[f\left(\frac{z}{(n q)^{m}}\right) \frac{y}{(n q)^{m}} \frac{x}{(n q)^{m}}\right]_{(g, h, k)} \|\right) \\
\leq & \lim _{m \rightarrow \infty} \frac{(n q)^{3 m} \theta}{(n q)^{m r}}\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
L([x y z])=[L(x) y z]_{(\sigma, \tau, \xi)}+\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}+[L(z) y x]_{(\sigma, \tau, \xi)}
$$

for all $x, y, z \in A$.
The rest of the proof is similar to the proof of [1, Theorem 2.1].
Theorem 1.4. Let $n \in \mathbb{N}$. Assume that $0<r<1$ if $n q>1$ and that $r>3$ if $n q<1$. Let θ be a positive real number, and let $f: A \rightarrow A$ be an odd mapping for which there exist mappings $g, h, k: A \rightarrow A$ with $g(0)=h(0)=k(0)=0$ satisfying (2.1), (2.3)(2.5) of [1] and (1.1). Then there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique C^{*}-Lie ternary (σ, τ, ξ)-derivation $L: A \rightarrow A$ satisfying (2.12)-(2.14) of [1] and

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\theta}{n q-(n q)^{r}}\|x\|^{r} \tag{1.3}
\end{equation*}
$$

for all $x \in A$.
Proof. By the same reasoning as in the proof of [1, Theorem 2.2], there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique \mathbb{C}-linear mapping $L: A \rightarrow A$ satisfying (2.1), (2.3)-(2.5) of [1] and (1.3). The mapping $L: A \rightarrow A$ is defined by

$$
L(x):=\lim _{m \rightarrow \infty} \frac{1}{(n q)^{m}} f\left((n q)^{m} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proofs of Theorem 1.3 and $[1$, Theorem 2.1].

Theorem 1.5. Let $n \in \mathbb{N}$. Assume that $r>1$ if $n q>1$ and that $0<n r<1$ if $n q<1$. Let θ be a positive real number, and let $f: A \rightarrow A$ be an odd mapping for which there exist mappings $g, h, k: A \rightarrow A$ with $g(0)=h(0)=k(0)=0$ satisfying (2.3)-(2.5), (2.17) of [1] and

$$
\begin{align*}
& \left\|f([x y z])-[f(x) y z]_{(g, h, k)}-\left[f(y)^{*} x^{*} z\right]_{(g, h, k)}-[f(z) y x]_{(g, h, k)}\right\| \tag{1.4}\\
& \leq \theta\|x\|^{r}\|y\|^{r}\|z\|^{r}
\end{align*}
$$

for all $x, y, z \in A$. Then there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique C^{*}-Lie ternary (σ, τ, ξ)-derivation $L: A \rightarrow A$ satisfying (2.6)-(2.8) of [1] and

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\theta}{n\left((n q)^{n r}-n q\right)}\|x\|^{n r} \tag{1.5}
\end{equation*}
$$

for all $x \in A$.
Proof. By the same reasoning as in the proof of [1, Theorem 2.3], there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique \mathbb{C}-linear mapping $L: A \rightarrow A$ satisfying (2.6)-(2.8) of [1] and (1.5). The mapping $L: A \rightarrow A$ is defined by

$$
L(x):=\lim _{m \rightarrow \infty}(n q)^{m} f\left(\frac{x}{(n q)^{m}}\right)
$$

for all $x \in A$.
It follows from (1.4) that

$$
\begin{aligned}
& \left\|L([x y z])-[L(x) y z]_{(\sigma, \tau, \xi)}-\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}-[L(z) y x]_{(\sigma, \tau, \xi)}\right\| \\
& =\lim _{m \rightarrow \infty}(n q)^{3 m}\left(\| f\left(\frac{[x y z]}{(n q)^{3 m}}\right)-\left[f\left(\frac{x}{(n q)^{m}}\right) \frac{y}{(n q)^{m}} \frac{z}{(n q)^{m}}\right]_{(g, h, k)}\right. \\
& \left.\quad-\left[f\left(\frac{y}{(n q)^{m}}\right)^{*} \frac{x^{*}}{(n q)^{m}} \frac{z}{(n q)^{m}}\right]_{(g, h, k)}-\left[f\left(\frac{z}{(n q)^{m}}\right) \frac{y}{(n q)^{m}} \frac{x}{(n q)^{m}}\right]_{(g, h, k)} \|\right) \\
& \leq \lim _{m \rightarrow \infty} \frac{(n q)^{3 m} \theta}{(n q)^{3 m r}}\left(\|x\|^{r}\|y\|^{r}\|z\|^{r}\right)=0
\end{aligned}
$$

for all $x \in A$. Hence

$$
L([x y z])=[L(x) y z]_{(\sigma, \tau, \xi)}+\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}+[L(z) y x]_{(\sigma, \tau, \xi)}
$$

for all $x, y, z \in A$ and the proof of the theorem is complete.
Theorem 1.6. Let $n \in \mathbb{N}$. Assume that $r>1$ if $n q<1$ and that $0<n r<1$ if $n q>1$. Let θ be a positive real number, and let $f: A \rightarrow A$ be an odd mapping for which there exist mappings $g, h, k: A \rightarrow A$ with $g(0)=h(0)=k(0)=0$ satisfying (2.3)-(2.5), (2.17) of [1] and (1.4). Then there exist unique \mathbb{C}-linear mappings σ, τ, ξ : $A \rightarrow A$ to A and a unique C^{*}-ternary (σ, τ, ξ)-derivation $L: A \rightarrow A$ satisfying (2.12)-(2.14) of [1] and

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{\theta}{n\left(n q-(n q)^{n r}\right)}\|x\|^{n r} \tag{1.6}
\end{equation*}
$$

for all $x \in A$.

Proof. By the same reasoning as in the proof of [1, Theorem 2.4], there exist unique \mathbb{C}-linear mappings $\sigma, \tau, \xi: A \rightarrow A$ and a unique \mathbb{C}-linear mapping $L: A \rightarrow A$ satisfying (2.12)-(2.14) of [1] and (1.6). The mapping $L: A \rightarrow A$ is defined by

$$
L(x):=\lim _{m \rightarrow \infty} \frac{1}{(n q)^{m}} f\left((n q)^{m} x\right)
$$

for all $x \in A$.
It follows from (1.4) that

$$
\begin{aligned}
& \left\|L([x y z])-[L(x) y z]_{(\sigma, \tau, \xi)}-\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}-[L(z) y x]_{(\sigma, \tau, \xi)}\right\| \\
& =\lim _{m \rightarrow \infty} \frac{1}{(n q)^{3 m}}\left(\| f\left((n q)^{3 m}[x y z]\right)-\left[f\left((n q)^{m} x\right)(n q)^{m} y(n q)^{m} z\right]_{(g, h, k)}\right. \\
& \left.\left.\quad-\left[f\left((n q)^{m} y\right)^{*}(n q)^{m} x^{*}(n q)^{m} z\right)\right]_{(g, h, k)}-\left[f\left((n q)^{m} z\right)(n q)^{m} y(n q)^{m} x\right]_{(g, h, k)} \|\right) \\
& \leq \lim _{m \rightarrow \infty} \frac{(n q)^{3 m r} \theta}{(n q)^{3 m}}\left(\|x\|^{r}\|y\|^{r}\|z\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
L([x y z])=[L(x) y z]_{(\sigma, \tau, \xi)}+\left[L(y)^{*} x^{*} z\right]_{(\sigma, \tau, \xi)}+[L(z) y x]_{(\sigma, \tau, \xi)}
$$

for all $x \in A$ and the proof of the theorem is complete.

References

1. M. Eshaghi Gordji, R. Farrokhzad \& S.A.R. Hosseinioun: Hyers-Ulam stability of ternary (σ, τ, ζ)-derivations on C^{*}-ternary algebras. J. Math. Phys. Anal. Geom. 8 (2012), no. 1, 3-20.
${ }^{\text {a Department of Mathematics, Hanyang University, Seoul 04763, Korea }}$
Email address: stardal@daum.net
${ }^{\text {b Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran }}$
Email address: madjid.eshaghi@gmail.com
${ }^{\text {c }}$ Department of Mathematics, Daejin University, Kyeonggi 11159, Korea
Email address: jrlee@daejin.ac.kr

[^0]: Received by the editors October 14, 2015. Accepted October 24, 2015.
 2010 Mathematics Subject Classification. 39B52, 17B40, 47B47.
 Key words and phrases. Lie ternary derivation, Lie ternary algebra, Hyers-Ulam stability, functional equation, C^{*}-ternary algebra.

 * Corresponding author.

