ON THE IMAGE OF DERIVATIONS

  • Published : 1999.09.01

Abstract

In this paper we will show that if [G($\chi$),$\chi$] D($\chi$) and [D($\chi$), G($\chi$)] lie in the nil radical of A for all $\chi$$\in$A, then either D or G maps A into the radical where D and G are derivations on a Banach algebra A.

Keywords

References

  1. J. London Math. Soc.(2) v.16 Automatic continuity and topologically simple radical Banach algebras J.Cusack
  2. Amer. J. Math. v.90 Continuity of derivations and a problem of Kaplanski B.E.Johnson;A.M.Sinclair
  3. Banach Center Publ. v.30 Where to find the image of a derivation M.Mathieu
  4. Proc. Amer. Math. Soc. v.8 Derivations in prime rings E.Posner
  5. Proc. Amer. Math. Soc. v.20 Continuous derivations on Banach algebras A.M.Sinclair
  6. London Math. Soc. Lecture Note Ser. v.21 Automatic continuity of linear operators
  7. Math. Ann. v.129 Derivations on commutative normed algebras I.M.Singer;J.Wermer
  8. Ann. of Math. v.128 The image of a derivation is contained in the radical M.P.Thomas
  9. Proc. Amer. Math. Soc. v.109 Commuting and centralizing mappings in prime rings J.Vukman
  10. Glas. Mat. v.26 A result concerning derivations in noncommutative Banach algebras