• Title/Summary/Keyword: deposition constant

Search Result 566, Processing Time 0.026 seconds

Properties of SiOCH Thin Film Dielectric Constant by BTMSM/O2 Flow Rates (BTMSM/O2 유량변화에 따른 SiOCH 박막의 유전상수 특성)

  • Kim, Jong-Wook;Hwang, Chang-Su;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.362-367
    • /
    • 2008
  • We have Manufactured the low-k dielectric interlayer fabricated by plasma enhanced chemical vapor deposition (PECVD), The thin film of SiOCH is studied correlation between components and Dielectric constant. The precursor was evaporated and introduced with the flow rates from 16 sccm to 25 sccm by 1sccm step in the constant flow rate of 60 sccm $O_2$ in process chamber. The chemical characteristics of SiOCH were analyzed by measuring FT/IR absorption lines and obtained each dielectric constant measuring C-V. Then compare respectively. ILD of BTMSM/$O_2$ could have low dielectric constant about $k\sim2$, and react sensitively. Also dielectric constant could be decreased by the effects of decreasing $CH_3$ and growing Si-O-Si(C) after annealing process.

Electrical Characteristics of ($Sr_{0.85}Ca_{0.15})TiO_3$ Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 ($Sr_{0.85}Ca_{0.15})TiO_3$ 박막의 전기적 특성)

  • 장원석;김진사;최운식;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.239-242
    • /
    • 1998
  • The (S $r_{0.85}$C $a_{0.15}$)Ti $O_3$ (SCT) thin films are deposited on Pt-coated electrode using RF magnetron sputtering method at various substrate temperature. Dielectric constant of SCT thin films is increased with increased as the deposition temperature and changes almost linearly in temperature ranges from -80 to +90[$^{\circ}C$]. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films is observed above 200[kHz]. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature.ure.

  • PDF

Preparation and Electrical Properties of $SrTiO_3$ Thin Films by Plasma Enhanced Metal Organic Chemical vapor Deposition (PE-MOCVD에 의한 $SrTiO_3$ 박막의 제조 및 전기적 특성에 관한 평가)

  • 김남경;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.177-182
    • /
    • 1996
  • strontium titanate (SrTiO3) thin films deposited on Pt/MgO were prepared by Plasma Enhanced Metal Orgainc Chemical vapor Deposition (Pe-MOCVD). The crystallinity of SrTiO3 thin films increased with increasing depo-sition temperature and SrF2 second phase disappeared at 55$0^{\circ}C$ The films showed a dielectric constant of 177 and a dissipation factor of 0.0195 at 100 kHz. The variation of capacitance of the films with applied voltage was small showing paraelectric properties. The charge storage density and leakage current density were 40fC/${\mu}{\textrm}{m}$2 and 3.49$\times$10-7 A/cm2 at 0.25 MV/cm, respectively.

  • PDF

Characteristics of Polyimides Humility Sensor Fabricated by using Electrophoretic Deposition (전기영동법에 의해 제작된 폴리이미드 박막의 습도 특성)

  • 조동헌;정병기;한상옥;김종석;박강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.67-70
    • /
    • 1994
  • On this study, we fabricated humudity sensor with polyimide thin film from the nonaqueous emulsion by the electrophoretic deposition as a function of film thickness. then evaluated performance of the sensor with increasing relative humidity if constant temperature constant humidity chamber, which is electronically controlled. we designed upper electrode of the sensor to brush type to make moisture particles permeate into the polymer bulk. sensing properties of the sensor on % RH shows proportion on the low %RH. Fer the 30V-30S- 200$^{\circ}C$ sample, percentage changing of capacitance on from 30 %RH to 90 %RH is 45.8 %, and increasing rate per 1 % RH of capacitance is 11.25 pF

  • PDF

The Characteristics of Electrolyte Temperature and Current Density on Selective Jet Electrodeposition (선택적 금속 전착에 대한 전해질 온도 및 전류밀도 영향분석)

  • Park, Chan-Kyu;Kim, Sung-Bin;Kim, Young-Kuk;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.400-404
    • /
    • 2018
  • A metal 3D printer has been developed on its own to electrodeposit the localized area. Nozzles were used to selectively laminate the electrolytic plating method. To analyze the factors affecting the deposition, the stack height, thickness and surface roughness were experimentally analyzed according to the current density and the temperature of the electrolyte. Electrolytic temperature and current are electrodeposited when the deposition conditions are dominant over the etching conditions, but the thickness is kept constant. On the contrary, when the etching conditions are dominant, the electrodeposited shape is rather the etched. As a result, the uniformity of surface quality and electrodeposition rate could be improved by conducting experiments under constant conditions of electrolyte temperature and current density.

Electrical Properties of Pt/SCT/Pt Thin Film Structure (Pt/SCT/Pt 박막 구조의 전기적인 특성)

  • Kim, Jin-Sa;Shin, Cheol-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1786-1790
    • /
    • 2007
  • The $(SrCa)TiO_3(SCT)$ thin films are deposited on Pt-coated electrode ($Pt/TiN/SiO_2/Si$) using RF sputtering method at various deposition temperature. The dielectric constant of SCT thin films were increased with the increase of deposition temperature, and changed almost linearly in temperature ranges of $-80{\sim}+90[^{\circ}C]$. Also, SCT thin films was observed the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency was observed above 200[kHz]. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of $25{\sim}100[^{\circ}C]$ can be divided into three characteristic regions with different mechanism by the increasing current. The region 1 below 0.8[MV/cm] shows the ohmic conduction. The region 2 can be explained by the Child's law, and the region 3 is dominated by the tunneling effect.

Properties of Thermoelectric Power in PbS Thin Films by Chemical Bath Deposition (화학 반응에 의한 PbS 박막의 열기전력 특성)

  • Cho, Jong-Rae;Cho, Jung-Ho;Kim, Kang-Eun;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.21-24
    • /
    • 2000
  • Properties of thermoelectric power in PbS thin films by chemical bath deposition were investigated The qualified PbS thin film was gained with the amounts of Thiourea($4-8ml/{\ell}$ ), Triethanolamine (1-2ml) and NaOH(l0ml). The molecular ratio of Pb and S was 3 : 7. Satisfied crystallization rate and deposition rate of PbS were greater at $50^{\circ}C$ than at $30^{\circ}C$. The constant of thermoelectric power in PbS was nearly $ 500uv/^{\circ}k$. The PbS thin film was changed from p-type to n-type semiconductor at around $200^{\circ}C$. In case of heat treatment at $300^{\circ}C$, the sample kept the characteristic of p-type semiconductors up to $250^{\circ}C$.

  • PDF

Analysis of Sticking Coefficient in BSCCO Superconductor Thin Film Fabricated by Co-deposition (공증착법으로 제작한 BSCCO 초전도 박막의 부착계수 해석)

  • An, In-Soon;Chun, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.300-303
    • /
    • 2001
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristic temperature dependence : almost a constant value of 0.49 below $730^{\circ}C$ and decreases linearly with temperature over $730^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, $Bi_{2}O_{3}$, from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi 2212 phase formation in the co-deposition process.

  • PDF

Study on Ti Deposition Rate from $TiI_4$ on Stainless Steel ($TiI_4$에 의한 Stainless 강의 Ti증착속도에 관한 연구)

  • Yoo, Jae-Keun;Han, Jun-Su;Paik, Young-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.18 no.1
    • /
    • pp.5-11
    • /
    • 1985
  • Titanium was deposited onto AISI-430 stainless steel by chemical vapor deposition from $TiI_4\;and\;H_2$ gas mixture. Effects of temperature, flow rate of the gas, and $TiI_4$ partial pressure on the deposition rate were thoroughly investigated. The deposition rate of Ti was found to be constant at the given temperature and was increased with increasing temperature. The rate is controlled by surface reaction at the flow rate of gas higher than 500 ml/min, whereas at the flow rate lower than that by diffusional process. It is also interesting to note that the reaction mechanism changes at 1050$^{\circ}C$, at temperatures lower than 1050$^{\circ}C$ the activation energy is 56.9 Kcal/mol, whilst at temperatures higher than that is 8.3 Kcal/mol.

  • PDF

Preparation of $CeO_2$ Based Solid Electrolyte Thin Films by Electrochemical Vapor Deposition (전기화학증착법에 의한 $CeO_2$계 고체전해질 박막의 제조)

  • 박동원;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1067-1073
    • /
    • 1997
  • The yttria doped ceria (YDC) thin films were fabricated by electrochemical vapor deposition on the porous $\alpha$-Al2O3 substrate. The growth rates of the films obeyed a parabolic rate law, which constant was 259.0 $m^2$/hr at 120$0^{\circ}C$. As deposition temperature (above 110$0^{\circ}C$) increased, dense thin films were enhanced. Mole fraction of XYC13 had an effect upon surface morphologies. Electrical conductivity was increased with deposition temperature. The conductivity of YDC film prepared at XYC13=7.9$\times$10-2 was about 0.097 S/cm at 104$0^{\circ}C$ and the activation energy of conduction was calculated to be 26.6 kcal/mol.

  • PDF