• 제목/요약/키워드: deposited layer

검색결과 2,397건 처리시간 0.031초

Characteristics of ZnO Films Deposited on Poly 3C-SiC Buffer Layer by Sol-Gel Method

  • Phan, Duy-Thach;Chung, Gwiy-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.102-105
    • /
    • 2011
  • This work describes the characteristics of zinc oxide (ZnO) thin films formed on a polycrystalline (poly) 3C-SiC buffer layer using a sol-gel process. The deposited ZnO films were characterized using X-ray diffraction, scanning electron microscopy, and photoluminescence (PL) spectra. ZnO thin films grown on the poly 3C-SiC buffer layer had a nanoparticle structure and porous film. The effects of post-annealing on ZnO film were also studied. The PL spectra at room temperature confirmed the crystal quality and optical properties of ZnO thin films formed on the 3C-SiC buffer layer were improved due to close lattice mismatch in the ZnO/3C-SiC interface.

ITO 투과율 향상을 위한 Buffer층 설계에 관한 연구 (A Study on Buffer Layer Design for Transmittance Improvement of Indium Tin Oxide)

  • 기현철;이정빈;김상기;홍경진
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.24-28
    • /
    • 2010
  • We have proposed an Buffer layer to improve the transmittance of ITO. Here, $SiO_2$ and $TiO_2$ were selected as the Buffer layer coating material. The structures of Buffer layer were designed in ITO/$SiO_2/TiO_2$/Glass and ITO/Glass/$TiO_2/SiO_2$. Then, these materials were deposited by ion-assisted deposition system. Transmittances of deposited ITO were 86.14 and 85.07%, respectively. These results show that the proposed structure has higher transmittance than the conventional ITO device.

저전압 구동용 전기스위치와 미러 어레이 응용을 위한 새로운 표면미세가공기술 (A New Surface Micromachining Technology for Low Voltage Actuated Switch and Mirror Arrays)

  • 박상준;이상우;김종팔;이상우;이상철;김성운;조동일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2518-2520
    • /
    • 1998
  • Silicon can be reactive ion etched (RIE) either isotropically or anisotropically. In this paper, a new micromachining technology combining these two etching characteristics is proposed. In the proposed method, the fabrication steps are as follows. First. a polysilicon layer, which is used as the bottom electrode, is deposited on the silicon wafer and patterned. Then the silicon substrate is etched anisotropically to a few micrometer depth that forms a cavity. Then an PECVD oxide layer is deposited to passivate the cavity side walls. The oxide layers at the top and bottom faces are removed while the passivation layers of the side walls are left. Then the substrate is etched again but in an isotropic etch condition to form a round trench with a larger radius than the anisotropic cavity. Then a sacrificial PECVD oxide layer is deposited and patterned. Then a polysilicon structural layer is deposited and patterned. This polysilicon layer forms a pivot structure of a rocker-arm. Finally, oxide sacrificial layers are etched away. This new micromachining technology is quite simpler than conventional method to fabricate joint structures, and the devices that are fabricated using this technology do not require a flexing structure for motion.

  • PDF

빗각 증착으로 제조한 Al 박막의 특성 (Characteristics of Al Films Prepared by Oblique Angle Deposition)

  • 박혜선;양지훈;정재훈;송민아;정재인
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.111-116
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition method which utilizes non-normal angles between the substrate and the vaporizing source. It has been known that tilting the substrate changes the properties of the film deposited on it, which was thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer Al films by magnetron sputtering. The magnetron sputtering source of 4 inch diameter was used to deposit the films. Al films have been deposited on Si wafers and cold-rolled steel sheets. The multilayer films were prepared by changing the tilting angle upside down at each layer interval, which means that when the first layer was deposited at an angle of $+45^{\circ}$, the second layer was deposited at an angle of $-45^{\circ}$, and vice versa. The microstructure, surface roughness and reflectance of the films were investigated using a scanning electron microscope, a surface profiler and a spectrophotometer, respectively. The corrosion resistance was measured and compared using the salt spray test. The single layer film prepared at an oblique angle of $60^{\circ}$ prepared at other angles. However, for the multilayer films, the film prepared at an oblique angle of $45^{\circ}$ showed the most compact and featureless structure. The multilayer films were found to exhibit higher corrosion resistance than the single layer films.

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.

Lifetime characteristics of flexible organic light emitting diodes on PET substrate with plasma polymer barrier layers

  • Kim, Kyu-Hyung;Kho, Sam-Il;Jung, Dong-Geun;Boo, Jin-Hyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.41-43
    • /
    • 2004
  • Plasma polymerized para-xylene ($PP_PX$) deposited by plasma-enhanced chemical vapor deposition (PECVD) was used as the barrier layer on the polyethylene terephthalate (PET) substrate to improve lifetime of the flexible organic light-emitting diodes (FOLEDs). The $PP_PX$ barrier layer deposited on top of the PET substrate with plasma power of 30 W at deposition pressure of 0.2 torr showed transmittance spectra good enough to be applied in FOLED on PET substrates. FOLEDs with the $PP_PX$ barrier layer (barrier-FOLEDs) showed similar I-V and B-V characteristics to FOLEDs without the $PP_PX$ layer (control-FOLEDs). The lifetime of barrier-FOLED was two times longer than that of the control-FOLED. With $PP_PX$ passivation layers, lifetimes of both control and barrier-FOLEDs were improved by more than 4 times. These results show that PECVD deposited $PP_PX$ layers can be used as barrier layers for FOLEDs on plastic substrates as well as passivation layers for general OLEDs.

  • PDF

Properties of IZTO Thin Films Deposited on PET Substrates with The SiO2 Buffer Layer

  • Park, Jong-Chan;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • 한국세라믹학회지
    • /
    • 제52권1호
    • /
    • pp.72-76
    • /
    • 2015
  • 150-nm-thick In-Zn-Tin-Oxide (IZTO) films were deposited by RF magnetron sputtering after a 10 to 50-nm-thick $SiO_2$ buffer layer was deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) substrates. The electrical, structural, and optical properties of the IZTO/$SiO_2$/PET films were analyzed with respect to the thickness of the $SiO_2$ buffer layer. The mechanical properties were outstanding at a $SiO_2$ thickness of 50 nm, with a resistivity of $1.45{\times}10^{-3}{\Omega}-cm$, carrier concentration of $8.84{\times}10^{20}/cm^3$, hall mobility of $4.88cm^2/Vs$, and average IZTO surface roughness of 12.64 nm. Also, the transmittances were higher than 80%, and the structure of the IZTO films were amorphous, regardless of the $SiO_2$ thickness. These results indicate that these films are suitable for use as a transparent conductive oxide for transparency display devices.

다양한 버퍼층 위에 증착한 In2O3 박막의 구조, 광학 및 전기적 특성 (Structural, Optical, and Electrical Properties of In2O3 Thin Films Deposited on Various Buffer Layers)

  • 김문환
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.491-495
    • /
    • 2012
  • The effects of various buffer layers on the $In_2O_3$ transparent conducting films grown on glass substrates by radio-frequency reactive magnetron sputtering were investigated. The $In_2O_3$ thin films were deposited at $400^{\circ}C$ of growth temperature and 100% of oxygen flow rate. The optical, electrical, and structural and morphological properties of the $In_2O_3$ thin films subjected to buffer layers were examined by using ultraviolet-visible spectrophotometer, Hall-effect measurements, and X-ray diffractometer, respectively. The properties of $In_2O_3$ thin films showed different results, depending on the type of buffer layer. As for the $In_2O_3$ thin film deposited on ZnO buffer layer, the average transmittance was 89% and the electrical resistivity was $7.4{\times}10^{-3}\;{\Omega}cm$. The experimental results provide a way for growing the transparent conducting film with the optimum condition by using an appropriate buffer layer.

Spin Coating 법을 이용한 $VF_2$-TrFE/Si(100) 구조의 제작 및 특성 (Fabrication and Properties of $VF_2$-TrFE/Si(100) Structure by using Spin Coating Method)

  • 이우석;정상현;곽노원;김가람;윤형선;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.115-116
    • /
    • 2008
  • The ferroelectric vinylidene fluoride-trifluoroethylene ($VF_2$-TrFE) and $Al_2O_3$ passivation layer for the Metal/Insulator/Ferroelectric/Semiconductor (MIFS) structure were deposited using spin coating and remote plasma atomic layer deposition (RPALD), respectively. A 2.5 ~ 3 wt % diluted solution of purified vinylidene fluoride-trifluoroethylene ($VF_2$: TrFE=70:30) in a DMF solution were prepared and deposited on silicon wafer at a optimized spin speed. After annealing in a vacuum ambient at 150 ~ $200^{\circ}C$ for 60 min, upper insulator layer were deposited at temperature ranging from 100 ~ $150^{\circ}C$ by RPALD. We described electrical and structural properties of MIFS fabricated by spin coating and RPALD methods.

  • PDF

Characteristics of Hafnium Silicate Films Deposited on Si by Atomic Layer Deposition Process

  • Lee, Jung-Chan;Kim, Kwang-Sook;Jeong, Seok-Won;Roh, Yong-Han
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.127-130
    • /
    • 2011
  • We investigated the effects of $O_2$ annealing (i.e., temperature and time) on the characteristics of hafnium silicate ($HfSi_xO_y$) films deposited on a Si substrate by atomic layer deposition process (ALD). We found that the post deposition annealing under oxidizing ambient causes the oxidation of residual Hf metal components, resulting in the improvement of electrical characteristics (e.g., hysteresis window and leakage current are decreased). In addition, we observed the annealing temperature is more important than the annealing time for post deposition annealing. Based on these observations, we suggest that post deposition annealing under oxidizing ambient is necessary to improve the electrical characteristics of $HfSi_xO_y$ films deposited by ALD. However, the annealing temperature has to be carefully controlled to minimize the regrowth of interfacial oxide, which degrades the value of equivalent oxide thickness.