• Title/Summary/Keyword: delta-sigma

Search Result 471, Processing Time 0.02 seconds

Development of Switched-Capacitor Sigma-Delta Modulator for Automotive Radars (차량 레이더용 스위치 커패시터 시그마-델타 변조기 개발)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1887-1894
    • /
    • 2010
  • This paper proposes a new switched-capacitor sigma-delta modulator for automotive radars. Developed modulator is used to perform high-resolution analog-to-digital conversion (ADC) of high frequency band signal in a radar system. It has supply voltage of 2.7V, and has body-effect compensated switch configuration with low voltage and low distortion. The modulator has been implemented in a $0.25{\mu}m$ double-poly and triple-metal standard CMOS process, and it has die area of $1.9{\times}1.5mm^{2}$. It showed better total harmonic distortion of 20dB than the conventional bootstrapped circuit at the supply voltage of 2.7V.

Design of LUT-Based Decimation Filter for Continuous-Time PWM ADC (연속-시간 펄스-폭-변조 ADC를 위한 LUT 기반 데시메이션 필터 설계)

  • Shim, Jae Hoon
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.461-468
    • /
    • 2019
  • A continuous-time Delta-Sigma ADC has various benefits; it does not require an explicit anti-aliasing filter, and it is able to handle wider-band signals with less power consumption in comparison with a discrete-time Delta-Sigma ADC. However, it inherently needs to sample the signal with a high-speed clock, necessitating a complex decimation filter that operates at high speed in order to convert the modulator output to a low-rate high-resolution digital signals without causing aliasing. This paper proposes a continuous-time Delta-Sigma ADC architecture that employs pulse-width modulation and shows that the proposed architecture lends itself to a simpler implementation of the decimation filter using a lookup table.

Structural Studies on Cyclic Compounds. Substituent Effects on the Reducing Ability of Dihydropyridines

  • Koh Park, Kwang-Hee;Moon, Gyeoung-Un;Kwon, Ki-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.168-170
    • /
    • 1987
  • The reaction between 1-benzyl-3-carbamoyl-1,4-dihydropyridine (BNAH) 1 and various 1-arylpyridinium salts 2, and the reaction between 1-(4-methylphenyl)-1,4-dihydropyridine 4b and 1-aryl-3-carbamoylpyridinium (1-arylnicotinamide) salts 5 were carried out. The extents of reaction in equilibrium were estimated by nmr integration data. The equilibrium constants for the reactions, K, and the standard Gibbs free energy changes for the reduction of the pyridinium salts to the corresponding 1,4-dihydropyridines ${\Delta}G^{\circ}'$ were evaluated. The Hammett plot of log K for the reaction between 1 and 2, and ${\Delta}G^{\circ}'$ against ${\sigma}_p$ of the substituents in 1-aryl moiety shows linear correlation with the reaction constant ${\rho}$ of 9.4 (for log K vs ${\sigma}_p$) and -54.5 KJ/mole (for ${\Delta}G^{\circ}'$ vs ${\sigma}_p$). It was found that 1-aryl-1,4-dihydropyridines have much higher reducing power than the corresponding 1-aryl-1,4-dihydronicotinamides, and the power is affected greatly by the electron-withdrawing ability of the substituents in aryl group. The reactions were utilized for preparation of 1,4-dihydropyridines bearing highly electron-withdrawing groups such as 4-nitrophenyl and 2,4-dinitrophenyl, which could not be obtained by conventional dithionite reduction of the corresponding pyridinium salts due to the base-labile nature of the salts.

Design of a High-Resolution Integrating Sigma-Delta ADC for Battery Capacity Measurement (배터리 용량측정을 위한 고해상도 Integrating Sigma-Delta ADC 설계)

  • Park, Chul-Kyu;Jang, Ki-Chang;Woo, Sun-Sik;Choi, Joong-Ho
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Recently, with mobile devices increasing, as a variety of multimedia functions are needed, battery life is decreased. Accordingly the methods for extending the battery life has been proposed. In order to implement these methods, we have to know exactly the status of the battery, so we need a high resolution analog to digital converter(ADC). In case of the existing integrating sigma-delta ADC, it have not convert reset-time conversion cycle to function of resolution. Because of this reason, all digital values corresponding to the all number of bits will not be able to be expressed. To compensated this drawback, this paper propose that all digital values corresponding to the number of bits can be expressed without having to convert reset-time additional conversion cycle to function of resolution by using a up-down counter. The proposed circuit achieves improved SNDR compared to conventional converters simulation result. Also, this was designed for low power suitable for battery management systems and fabricated in 0.35um process.

Design of a Inverter-Based 3rd Order ΔΣ Modulator Using 1.5bit Comparators (1.5비트 비교기를 이용한 인버터 기반 3차 델타-시그마 변조기)

  • Choi, Jeong Hoon;Seong, Jae Hyeon;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.39-46
    • /
    • 2016
  • This paper describes the third order feedforward delta-sigma modulator with inverter-based integrators and a 1.5bit comparator for the application of audio signal processing. The proposed 3rd-order delta-sigma modulator is multi-bit structure using 1.5 bit comparator instead of operational amplifier. This delta-sigma modulator has high SNR compared with single-bit 4th-order delta-sigma modulator in a low OSR. And it minimizes power consumes and simplified circuit structure using inverter-based integrator and using inverter-based integrator as analogue adder. The modulator was designed with 0.18um CMOS standard process and total chip area is $0.36mm^2$. The measured power cosumption is 28.8uW in a 0.8V analog supply and 66.6uW in a 1.8V digital supply. The measurement result shows that the peak SNDR of 80.7 dB, the ENOB of 13.1bit and the dynamic range of 86.1 dB with an input signal frequency of 2.5kHz, a sampling frequency of 2.56MHz and an oversampling rate of 64. The FOM (Walden) from the measurement result is 269 fJ/step, FOM (Schreier) was calculated as 169.3 dB.

Performance and Jitter Effects Analysis of Single Bit Electro-Optical Sigma-Delta Modulators (단일 비트 전자-광학 시그마-델타 변조기의 성능 및 지터 효과 분석)

  • Nam, Chang-Ho;Ra, Sung-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.706-715
    • /
    • 2012
  • Electro-optical sigma-delta modulators are the core module of digital receiver to digitize wideband radio-frequency signals directly at an antenna. Electro-optical sigma-delta modulators use a pulsed laser to oversample an input radio-frequency signals at two Mach-Zehnder Interferometer(MZI) and shape the quantization noise using a fiber-lattice accumulator. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. The jitter affects greatly on reconstructing the original input signal of modulator. This paper analyzes the performance of first order single bit electro-optical sigma-delta modulator in the time domain and the frequency domain. The performance of modulator is analyzed by using asynchronous spectral averaging of the reconstructed signal's spectrum in the frequency domain. The reference value of time jitter is presented by analyzing the performance of jitter effects. This kind of jitter value can be used as a reference value on the design of modulators.

Design of a Spread Spectrum Clock Generator for DisplayPort (DisplayPort적용을 위한 대역 확산 클록 발생기 설계)

  • Lee, Hyun-Chul;Kim, Tae-Ho;Lee, Seung-Won;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.68-73
    • /
    • 2009
  • This paper describes design and implementation of a spread spectrum clock generator (SSCG) for the DisplayPort. The proposed architecture generates the spread spectrum clock using a sigma-delta fractional-N PLL. The SSCG uses a digital End order MASH 1-1 sigma-delta modulator and a 9bit Up/Dn counter. By using MASH 1-1 sigma-delta modulator, complexity of circuit and chip area can be reduced. The advantage of sigma-delta modulator is the better control over modulation frequency and spread ratio. The SSCG generates dual clock rates which are 270MHz and 162MHz with 0.25% down-spreading and triangular waveform frequency modulation of 33kHz. The peak power reduction is 11.1dBm at 270MHz. The circuit has been designed and fabricated using in 0.18$\mu$m CMOS technology. The chip occupies 0.620mm$\times$0.780mm. The measurement results show that the fabricated chip satisfies the DispalyPort standard.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

CLASSIFICATION AND EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • ZHOU YONG;LI C. F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.127-144
    • /
    • 2005
  • In this paper, we consider the higher order nonlinear neutral delay difference equation of the form $\Delta^{\gamma}(x_{n}+px_{n-\gamma})+f(n, x_{n-\sigma_1(n)}, x_{n-\sigma_2(n)}, \ldots, x_{n-\sigma{_m}(n)})=0$. We give an integrated classification of nonoscillatory solutions of the above equation according to their asymptotic behaviours. Necessary and sufficient conditions for the existence of nonoscillatory solutions with designated asymptotic properties are also established.

Theoretical Study on Antitumor Activity of Palladium(II) and Platinum(II) Complexes with Isoxazole and Its Derivatives (이소옥사졸과 그의 유도체들이 배위된 팔라듐(Ⅱ)과 백금(Ⅱ) 착물의 항암활성에 관한 이론적 연구)

  • Kim, Jung-Sung;Song, Young-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.4
    • /
    • pp.369-377
    • /
    • 1998
  • The palladium(II) and platinum(II) complexes(where, $([M(L)_2X_2]$, M=Pd(II), Pt(II); L=isoxazole(isox), 3,5-dimethylisoxazole(3,5-diMeisox), 3-methyl, 5-phenylisoxazole(3-Me, 5-Ph-isox), and 4-amino-3,5-dimethylisoxazole (4-ADI); X=Cl, Br) with isoxazole and its derivatives were investigated on antitumor activity by MM2 and EHMO calculation. Because for all the complexes the ${\sigma}MO$ energy level $(E_{{\sigma}(M-X)})$ between $d_x^{2-}_y^2$ orbital of central metal and px orbital of halogen atom is less than ${\sigma}MO$ energy level $(E_{{\sigma}(M-N)})$ between $d_x^{2-}_y^2$ orbital of central metal and px orbital of N atom, without exception. And judging, from the lower $(E_{\'{o}(m-x)})$ value in trans, the bonding strength was found to be weaker in trans isomer than in cis. For the Pd(II) and Pt(II) complexes which have planar ligands, it was shown that for all the complexes dissociation of X-atom in the Pd(II) complexes is easier than that of X-atom in the Pt(II) complexes in both cis- and trans-complexes. Therefore it suggests that the easier dissociation of $X^-$ ion has some relations with antitumor activity, and a linear equation with correlation coefficient of 0.96 was found between ${\Delta}E_{{\sigma}(N-X)}(E_{{\sigma}(M-N)}-E_{{\sigma}(M-X)})$ and inhibitory activity coefficient, logIA.

  • PDF