이소옥사졸과 그의 유도체들이 배위된 팔라듐(Ⅱ)과 백금(Ⅱ) 착물의 항암활성에 관한 이론적 연구

Theoretical Study on Antitumor Activity of Palladium(II) and Platinum(II) Complexes with Isoxazole and Its Derivatives

  • 김정성 (대구대학교 사범대학 화학교육과) ;
  • 송영대 (영남대학교 이과대학 화학과)
  • Kim, Jung-Sung (Department of Chemistry Education, Taegu University) ;
  • Song, Young-Dae (Department of Chemistry Education, Yeungnam University)
  • 발행 : 19980800

초록

이소옥사졸과 그의 유도체가 배위된 팔라듐(II) 및 백금(II)착물$([M(L)_2X_2]$, M=Pd(II), Pt(II); L=isoxazole(isox), 3,5-dimethylisoxazole(3,5-diMeisox), 3-methyl, 5-phenylisoxazole(3-Me, 5-Phisox), and 4-am-ino 3,5-dimethylisoxazole(4-ADI); X=Cl, Br)의 항암활성을 분자역학(MM2)법으로 최소에너지를 갖는 구조를 구한 후 확장분자궤도함수(EHMO)법으로 조사하였다. 중심금속의 $d_x^{2-}_y^2$ 궤도함수와 할로겐 원자의 $p_x$ 궤도함수 사이의 ${\sigma}MO$ 에너지준위$(E_{{\sigma}(Pd,Pt-X)})$가 질소원자의 $p_x$ 궤도함수 사이의 ${\sigma}MO$ 에너지준위 $(E_{\sigma}(Pd,Pt-N))$보다 예외없이 더 높아서 결합이 약함을 알 수 있었다. 아울러 같은 착물에서 cis- 보다 trans-착물에서 $(E_{\sigma}(Pd,Pt-X))$ 값이 더 높아서 결합이 약함을 알았다. 또한 평면형 리간드가 배위될 경우 cis-, trans- 이성체 모두 백금착물에서보다 팔라듐착물에서 $X^-$ 이온의 이탈이 더 용이했다. 다라서 $X^-$ 이온으로 떨어져 나가는 용이성이 항암활성과 어떤 관계가 있을 것으로 생각하고 $E_{{\sigma}(Pd,Pt-N)}-E_{{\sigma}(Pd,Pt-X)}({\Delta}E_{{\sigma}(N-X)})$과 저해활성 계수인 logIA의 값를 도시하였던바 실험치와 상관 계수가 0.96인 좋은 직선성이 성립함을 알 수 있었다.

The palladium(II) and platinum(II) complexes(where, $([M(L)_2X_2]$, M=Pd(II), Pt(II); L=isoxazole(isox), 3,5-dimethylisoxazole(3,5-diMeisox), 3-methyl, 5-phenylisoxazole(3-Me, 5-Ph-isox), and 4-amino-3,5-dimethylisoxazole (4-ADI); X=Cl, Br) with isoxazole and its derivatives were investigated on antitumor activity by MM2 and EHMO calculation. Because for all the complexes the ${\sigma}MO$ energy level $(E_{{\sigma}(M-X)})$ between $d_x^{2-}_y^2$ orbital of central metal and px orbital of halogen atom is less than ${\sigma}MO$ energy level $(E_{{\sigma}(M-N)})$ between $d_x^{2-}_y^2$ orbital of central metal and px orbital of N atom, without exception. And judging, from the lower $(E_{\'{o}(m-x)})$ value in trans, the bonding strength was found to be weaker in trans isomer than in cis. For the Pd(II) and Pt(II) complexes which have planar ligands, it was shown that for all the complexes dissociation of X-atom in the Pd(II) complexes is easier than that of X-atom in the Pt(II) complexes in both cis- and trans-complexes. Therefore it suggests that the easier dissociation of $X^-$ ion has some relations with antitumor activity, and a linear equation with correlation coefficient of 0.96 was found between ${\Delta}E_{{\sigma}(N-X)}(E_{{\sigma}(M-N)}-E_{{\sigma}(M-X)})$ and inhibitory activity coefficient, logIA.

키워드

참고문헌

  1. Nature(London) v.222 Rosenberg, B.;van Camp, L.;Trosko, J. E.;Mansour, V. H.
  2. Cisplatin-Current Status and New Developments Prestayko, A. W.;Crooke, S. T.;Carter, S. K.(eds.)
  3. J. Inorg. Nucl. Chem. v.41 Graham, R. D.;Williams, D. R.
  4. Cancer Treat. Rep. v.63 Connors, T. A.;Cleare, M. J.;Harap, K. R.
  5. Dev Oncol. v.17 Gill, D. S.
  6. Biofisica v.22 Zakharova, I. A.;Tatjanenko, L. V.;Yu. Sh. Moshkovsky, Y. S.;Raykhman, L. M.;Kondratjeva, T. A.
  7. J. Biol. Chem. v.216 Benesch, E.;Harly, H. A.;Benesch, R.
  8. Proc. 7th Conference of Coordination Chemistry Zakharova, I. A.;Ashak, J.;Ankovsky, J. A. B.;Tatjanenko, L. V.;Moshkovsky, Y. S.
  9. Coordination Chemistry Reviews v.99 Haiduc, I.;Silverstru, C.
  10. In Metal Ions in Biological Systems v.11 Cleare, M. J.;Hydes, H. C.;Sigel, H.(Ed.)
  11. Bioinorg. Chem. v.2 Cleare, M. J.;Hoeschele, J. D.
  12. J. Inorg. Nucl. Chem. v.41 Graham, R. D.;Williams, D. R.
  13. Recent Results Canver Res. v.48 Cleare, M. J.
  14. Chem. Biol. Interact. v.11 Dehand, J.;Jordanov, J.;Beck, J. P.
  15. In Platinum Compounds in Cancer Chemotherapy(Developments in Oncology Series) v.17 Gill, D.;Hacker, M. P.;Douple, E. B.;Krakoff, I. M.(Ed.)
  16. Dev. Oncol. v.17 Gill, D. S.
  17. Progr. Nucl. Ac. Res. Mol. Biol. v.22 Robert, J. J.;Thomson, A. J.
  18. Platinum Coordination Compounds in Cancer Chemotherapy Hacker, M. P.;Douple, E. B.;Krakoff, I. H.(eds.)
  19. J. Med. Chem. v.32 Farrell, N.;HA, T. T. B.;Souchard, J. P.;Wimmer, F. L.;Cros, S.;Johnson, N. P.
  20. Inorg. Chem. v.31 Beusichem, M. V.;Farrell, N.
  21. J. Med. Chem. v.33 Farrell, N.;Qu, Y.;Hacker, M. P.
  22. Inorg. Chem. v.33 Bleomink, M. J.;Dorenbos, J. P.;Heetebrij, R. J.;Keppler, B. K.;Reedijk, J.;Zahn, H.
  23. 分子科學與 化學硏究 第2期 v.8 Tang, W. X.;Dong, Y.;Qu, Y.;Dai, A. B.
  24. 藥學學報, Pharmaceutica Sinica v.21 Qu, Y.;Tang, W. X.;Dai, A. B.
  25. Biological Trace Element Research v.5 Cracunescu, D.;Ghirvu, C.;Lo'pez, A. D.
  26. Dev. Oncol. v.17 Gill, D. S.
  27. J. Kor. Chem. Soc. v.29 Park, B. K.;Yeo, H. J.
  28. J. Inorg. Nucl. Chem. v.37 Pinna, R.;Ponticelli, G.;Preti, C.
  29. Transition Met. Chem. v.1 Pinna, R.;Ponticelli, G.;Preti, C.;Tosi, G.
  30. IN. Used or MMX molecular mechanics calculations MMX Program (a variant of MM2)
  31. J. Chem. Phys. v.39 Hoffmann, R.
  32. J. Chem. Phys. v.37 Hoffmann, R.;Lipscomb, W. N.
  33. J. Am. Chem. Soc. v.100 Ammeter, J. H.;Burg, H. B.;Thibwault, J. C.;Hoffmann, R.
  34. QCPE. v.11 Hoffmann, R.
  35. J. Chem. Soc. Dalton Trans. Orpen, A. G.;Brammer, L.;Allen, F. H.;Kennard, O.;Watson, D. G.;Taylor, R.
  36. Tables of Interatomic Distances and Configuration in Molecules and Ions no.11 Sutton, L. E.
  37. International Tables for X-Ray Crystallography v.3 Kennard, O.
  38. Nature(London) v.222 Rosenberg, B.;van Camp, L.;Trosko, J. E.;Mansour, V. H.
  39. Chem. Biol. Interactions v.30 Boudreaux, E. A.;Carsey, T. P.
  40. J. Am. Chem. Soc. v.118 Takahara, P. M.;Frederick, C. A.;Lippard, S. J.
  41. J. Biol. Chem. v.216 Benesch, E.;Harly, H. A.;Benesch, R.
  42. J. Inorg. Biochem. v.15 Zakharova, I. A.;Salyn, J. V.;Tatjanenko, L. V.;Mashkovsky, Y. S.;Ponticell, G.
  43. ibid. v.36 Hoffmann, R.;Lipscomb, W. N.
  44. J. Chem. Phys. v.36 Hoffmann, R.;Lipscomb, W. N.
  45. Tables of Interatomic Distances and Configuration in Molecules and Ions no.18 Sutton, L. E.