• Title/Summary/Keyword: delayed fuzzy systems

Search Result 37, Processing Time 0.033 seconds

Improved Digital Redesign for Fuzzy Systems: Compensated Bilinear Transform Approach

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.765-770
    • /
    • 2005
  • This paper presents a new intelligent digital redesign (IDR) method via the compensated bilinear transformation to design the digital controller such that the digital fuzzy system is equivalent to the analog fuzzy system in the sense of the state-matching. This paper especially consider a multirate control scheme with a predictive feature, where the digital control input is held constant N times between the sampling points. More precisely, the multirate control scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state from the state measured at the sampling points, the delayed measurements. For this system, the IDR conditions incorporated with stabilizability in the format of the linear matrix inequalities (LMIs) are derived. The superiority of the proposed technique is convincingly visualized through a numerical example.

Internet Based Network Control using Fuzzy Modeling

  • Lee, Jong-Bae;Park, Chang-Woo;Sung, Ha-Gyeong;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1162-1167
    • /
    • 2004
  • This paper presents the design methodology of digital fuzzy controller(DFC) for the systems with time-delay. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering time-delay become easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to solve the stable feedback gains and a common Lyapunov function for designed fuzzy control system. To show the effectiveness the proposed control scheme, the network control example is presented.

  • PDF

Fuzzy Sensor Algorithm for Traffic Monitoring applied by the Analytic Hierachy Processs (AHP기법을 활용한 교통량조사 퍼지센서 알고리즘)

  • Jin, Hyun-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.276-285
    • /
    • 2008
  • Traffic monitoring method is mainly loop detector and piezo sensor. But this method is only detecting the number of vehicle. Monitoring traffic volume is not checking the number of vehicle but checking the length of access road, width of road, number of passing people,passing vehicle,delayed vehicle. The traffic signal control cycle is not fixed by only passing vehicle number but all related traffic proposal. This paper proposed selecting common characteristic out of each unrelated traffic proposal through Analytic Hierachy Process and this characteristic is applied to compose fuzzy sensor algorithm which find out new traffic volume concept of confusion degree. The accumulated delayed vehicle time is shorter in new fuzzy sensor algorithm applied by AHP than other traffic method

  • PDF

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

Design and Implementation of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator (퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 및 구현)

  • Lee, Sang-Yun;Shin, Woo-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.334-341
    • /
    • 2003
  • In this paper, we proposed a recurrent time delayed neural network(RTDNN) controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network(TDU) controller. We implemented the controller using the DSP processor and applied in a hydraulic servo system. And then we observed an experimental results.

Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach (퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계)

  • Kim, Taek-Ryong;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

Stabilization of Input-Delayed TS Fuzzy Systems

  • Lee, Ho-Jae;Park, Jin-Bae;Cha, Dae-Beum;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.140-143
    • /
    • 2001
  • In this paper, a control problem of the Takagi-Sugeno(TS) fuzzy system with time-varying input delay is considered. It is well known that the delay is one of the major sources responsible for the instability of the controlled system. A systematic design technique is developed based on the Lyapunov-Razumikhin stability theorem. A sufficient condition for the global asymptotic stability of the TS fuzzy systems is formulated in terms of linear matrix inequalities (LMIs). The derived condition can deal with any time-varying input delay within the admissible bound. The effectiveness of the proposed controller design technique is demonstrated by a numerical simulation.

  • PDF

H Control for Discrete-Time Fuzzy Markovian Jump Systems with State and Input Time Delays (상태 및 입력 시간지연을 갖는 이산 퍼지 마코비안 점프 시스템의 H 제어)

  • Lee, Kap-Rai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.28-35
    • /
    • 2012
  • This paper presents the method for $H_{\infty}$ fuzzy controller design of discrete-time fuzzy Markovian jump systems with state and input time delays. The Takagi and Sugeno fuzzy model is employed to represent a delayed nonlinear system that possesses Markovian jump parameters. A stochastic mode dependent Lyapunov function is employed to analyze the stability and $H_{\infty}$ disturbance attenuation performance of the fuzzy Markovian jump systems with state and input time delays. A sufficient condition for the existence of fuzzy $H_{\infty}$ controller is given in terms of matrix inequalities. Also numerical example is presented to illustrate the efficiency of the proposed design method.

Takagi-Sugeno Model-Based Non-Fragile Guaranteed Cost Control for Uncertain Discrete-Time Systems with State Delay

  • Fang, Xiaosheng;Wang, Jingcheng;Zhang, Bin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2008
  • A non-fragile guaranteed cost control (GCC) problem is presented for a class of discrete time-delay nonlinear systems described by Takagi-Sugeno (T-S) fuzzy model. The systems are assumed to have norm-bounded time-varying uncertainties in the matrices of state, delayed state and control gains. Sufficient conditions are first obtained which guarantee that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound. Then the design method of the non-fragile guaranteed cost controller is formulated in terms of the linear matrix inequality (LMI) approach. A numerical example is given to illustrate the effectiveness of the proposed design method.

Design of Fuzzy Controller for Input-delayed TS Fuzzy Systems (시변 입력 지연을 포함한 TS 퍼지 시스템을 위한 퍼지 제어기 설계)

  • 주영훈;이호재;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.208-214
    • /
    • 2001
  • 본 논문은 시변 입력 지연을 포함한 Takagi-Sugeno (TS) 퍼지 시스템으로 표현 가능한 비선형 시스템을 위한 체계적인 제어기의 설계 기법을 제안한다. 입력 지연은 화학 공정 시스템, 인터넷 기반 가상 실험실, 자율 이동 로봇의 원격 제어등, 실제의 산업 현장에서 매우 빈번히 발생하는 현상이며 제어 시스템의 성능을 감소시키며, 안정성을 저해하는 요소로 알려져 있다. 따라서 본 논문에서 다루고자 하는 문제는 매우 실제적인 문제이며 반드시 해결하여야 할 문제이다. 본 논문은 Lyapunov-Razumikhin 안정 이론에 기반하여 TS 퍼지 모델 기반 제어기의 설계 조건을 제시한다. 최종적인 제어기의 설계 조건은 선형 행렬 부등식의 형태로 주어진다. TS 퍼지모델 기반 제어기가 안정화시킬 수 있는 입력지연의 상한 값을 최대화하기 위하여 이중 최적화 기법을 도입한다. 제안된 제어기 설계 기법의 우수성과 타당성을 입증하기 위하여 모의 실험을 수행하였다. 컴퓨터 시뮬레이션 결과, 본 논문에서 제안한 타당성을 입증할 수 있다.

  • PDF