
1. INTRODUCTION 

The control problems for delayed systems have attention 

over the last few decades since the time-delay is frequently a 

source of instability and encountered in various engineering 

systems. Extensive research has already been done in the 

conventional control to find the solutions [1][2]. However, for 

fuzzy control systems, there are few studies on the 

stabilization problem for especially systems with 

time-delay[3][4]. A linear controller like PID controllers has a 

short time-delay in calculating the output since its algorithm is 

so simple. However, in the case of a complex algorithm like 

fuzzy or neural networks, a considerable time-delay can occur 

because so many calculations are needed to get the output. 

Nevertheless, the most conventional discrete time fuzzy 

controllers are the ideal controllers in which the time-delay is 

not considered. Recently, to deal with the time-delay, the 

design methods of the fuzzy control systems with higher order 

have been proposed in [5]. However the structure of the 

control system is very complex because the design of higher 

order fuzzy rule-base is highly difficult. 

In this paper, the digital fuzzy control system considering a 

time delay is developed and its stability analysis and design 

method are proposed. We use the discrete Takagi-Sugeno(TS) 

fuzzy model and parallel distributed compensation(PDC) 

conception for the controller[6-9]. And we follow the linear 

matrix inequality(LMI) approach to formulate and solve the 

problem of stabilization for the fuzzy controlled systems with 

time-delay. The analysis and the design of the discrete time 

fuzzy control systems by LMI theory are considered in 

[10-12].  

If the system has a considerable time-delay the analysis and 

the design of the controller are very difficult since the 

time-delay makes the output of the controller not synchronized 

with the sampling time. We propose the PDC-type fuzzy 

feedback controller whose output is delayed with unit 

sampling period and predicted using current states and the 

control input to the plant at previous sampling time. The 

analysis and the design of the controller are very easy because 

the output of the proposed controller is synchronized with the 

sampling time. Therefore, the proposed control system can be 

designed using the conventional methods for stabilizing the 

discrete time fuzzy systems and the feedback gains of the 

controller can be obtained using the concept of the LMI 

feasibility problem. The proposed DFC is applied to network  

control through internet to verify the validity and the 

effectiveness of the control scheme. 

2. DISCRETE TS MODEL BASED FUZZY 

CONTROL  

In the discrete time TS fuzzy systems without control input, 

the dynamic properties of each subspace can be expressed as 

the following fuzzy IF-THEN rules[6]. 
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where nT

n kxkxkxk )()()()( 21x  denotes 

the state vector of the fuzzy system, r is the number of the 

IF-THEN rules, and Mij is fuzzy set. 

If the state x(k) is given, the output of the fuzzy system 

expressed as the fuzzy rules of Eq. (1) can be inferred as 

follows.
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A sufficient condition for ensuring the stability of the fuzzy 

system(2) is given in Theorem 1.

Theorem 1 : The equilibrium point for the discrete time 

fuzzy system (2) is asymptotically stable in the large if there 

exists a common positive definite matrix P satisfying the 

following inequalities. 
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Proof : The proof can be given in [7]. 

In the discrete time fuzzy system with control input to the 

plant, the dynamic properties of each subspace can be 

expressed as the following fuzzy IF-THEN rules. 
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where nT

n kxkxkxk )()()()( 21x  denotes 

the state vector of the fuzzy system. 
mT

m kukukuk )()()()( 21u denotes the input 

of the fuzzy system. 

r  is the number of the fuzzy IF-THEN rules, and ijM  is 

the fuzzy set. 

If the set of ))(),(( kk ux  is given the output of the fuzzy 

system (4) can be obtained as follows. 
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In PDC, the fuzzy controller is designed distributively 

according to the corresponding rule of the plant[9]. Therefore, 

the PDC for the plant (4) can be expressed as follows. 
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The fuzzy controller output of Eq. (6) can be inferred as 

follows. 
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where )(khj  is the same function in Eq. (5). 

Substituting Eq. (7) into Eq. (5) gives the following closed 

loop discrete time fuzzy system. 
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Defining jiiij FBAG  , the following equation is 

obtained. 
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Applying Theorem 1 to analyze the stability of the discrete 

time fuzzy system (9), the stability condition of Theorem 2

can be obtained. 

Theorem 2 : The equilibrium point of the closed loop 

discrete time fuzzy system (9) is asymptotically stable in the 

large if there exists a common positive definite matrix P which 

satisfies the following inequalities for all i and j except the set 

),( ji  satisfying 0)()( khkh ji .
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Proof : The proof can be given in [7]. 

  If rBBBB 21  in the plant (5) is satisfied, 

the closed loop system (8) can be obtained as follows. 
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where iii BFAG

Hence, Theorem 1 can be applied to the stability analysis 

of the closed loop system (11). 

3. LMI APPROACH FOR FUZZY SYSTEM 

DESIGN 
To prove the stability of the discrete time fuzzy control 

system by Theorem 1, the common positive definite matrix P

must be solved. LMI theory can be applied to solving P [13]. 

LMI theory is one of the numerical optimization techniques. 

Many of the control problems can be transformed into LMI 

problems and the recently developed Interior-point method 

can be applied to solving numerically the optimal solution of 

these LMI problems[14]. 

Definition 1 : Linear matrix inequility can be defined as 

follows. 
m
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where 
T

m
xxx 21x is the parameter, the 

symmetric matrices minnT

ii ,,0,FF  are given, 

and the inequality symol “ 0 ” means that )(xF  is the 

positive definite matrix. 

LMI of Eq. (12) means the convex constraints for x.

Convex constraint problems for the various x can be expressed 

as LMI of Eq. (12). LMI feasibility problem can be described 

as follows. 

LMI feasibility problem : The problem of finding feaspx

which satisfies 0xF )( feasp  or proving the unfeasibility in 

the case that LMI 0xF )(  is given. 

If the design object of a controller is to guarantee the 

stability of the closed loop system (2), the design of the PDC 

fuzzy controller(4) is equivalent to solving the following LMI 

feasibility problem using Schur complements[13]. 

LMI feasibility problem equivalent to the PDC design 

problem : The problem of finding 0X  and 

rMMM ,,, 21  which satisfy the following equations. 
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where 1PX , XFM 11 , XFM 22 , ,and XFM rr .

The feedback gain matrices rFFF ,,, 21  and the common 

positive definite matrix P  can be given by the LMI 

solutions, X  and rMMM ,,, 21 , as follows. 

1XP , 1

11 XMF , 1

22 XMF , , and 1XMF rr
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4. DIGITAL FUZZY CONTROL SYSTEM 

CONSIDERING TIME-DELAY 

In a real control system, a considerable time-delay can 

occur due to a communication and a controller. Let  be 

defined as the sum of all this time-delay. In the case of the real 

system, the ideal fuzzy controller of Eq. (3) can be described 

as follows due to the time-delay. 
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  Because the time-delay makes the output of controller 

not synchronized with the sampling time, Theorem 1 can not 

be applied to this system. Therefore the analysis and the 

design of the controller are very difficult. In this paper, DFC 

which has the following fuzzy rules is proposed to consider 

the time-delay of the fuzzy plant (1). 
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  The output of DFC (14) is inferred as follows. 
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The output timing of a ideal controller, a delayed controller, 

and the proposed controller is shown in the Fig. 1. In the ideal 

controller, it is assumed that there is no time-delay. If this 

controller is implemented in real systems the time-delay  is 

added like Eq. (13). The analysis and the design of this system 

with delayed controller are very difficult since the output of 

controller is not syncronized with the sampling time. 

On the other hand, the analysis and the design of the 

proposed controller are very easy because the controller output 

is syncronized with the sampling time delayed with unit 

sampling period.  

time

kT (k+1)TkT+

Time Delay 

Sampling  Time T

Ideal Controller Delayed Controller Proposed Controller

Fig. 1. Output Timing of the Controllers 

Combining the fuzzy plant (2) with the DFC (15), the 

closed loop system is given as follows. 
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Hence, the stability condition of the closed loop system 

(17) becomes the same as the sufficient condition of Theorem 

1 and the stability can be determined by solving LMI 

feasibility problem about the stability condition of Theorem 1.

Also, the design problem of the DFC guaranteeing the stability 

of the closed loop system can be transformed into LMI

feasibility problem. To do this, the design problem of the DFC 

is transformed into the design problem of the PDC fuzzy 

controller. 

PDC design problem equivalent to DFC design problem :  

The problem of designing the PDC fuzzy controller 
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 Therefore, using the same notation in section 3, the design 

problem of the DFC can be equivalent to the following LMI 

feasibility problem.

LMI feasibility problem equivalent to DFC design 

problem :

The problem of finding 0X  and rMMM ,,, 21

which satisfy following equation. 
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  The feedback gain matrices rFFF ,,, 21  and the 

common positive definite matrix P  can be given by the LMI 

solutions, X and rMMM ,,, 21 , as follows. 

1XP , 1

11
XMF , 1

22
XMF , 1, XMF rr     (18) 

  Therefore, the control gain matrices 

rr EEDD ,,,,, 11  of the proposed DFC can be obtained 

from the feedback gain matrices rFFF ,,, 21 .

5. APPLICATIONS TO NETWORK CONTROL 

VIA INTERNET 

We have shown an analysis technique of the proposed DFC 

under the condition that time-delay exists in section 4. We 

apply the controller to network control system with time-delay 

caused by internet communication. The overall control 

configuration is shown in Fig. 2. The block diagram of the 

control system is shown by Fig. 3. In this figure, the actuator 

that we will control is a linear permanent magnet brushless 

DC motor (LPMBDCM) with 3 phase. 
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Fig. 3 Block diagram of control system 

The state variable model for the LPMBDCM is given by 

(19) [16]. 
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Table 1. Parameters of LPMBDCM 

px traslational position pole pitch 

dx1 desired translational 

position qL quadrature-axis 

inductance 

px translator speed dL direct-axis inductance

dx2 desired translational 

speed lsL direct-axis inductance

qi
quadrature-azis 

current max

maximum value of 

flux linkages 

dx3

desired

quadrature-axis 

current
r phase resistance 

di direct-axis current riF
value of the i th 

cogging force 

dx4 desired direct-axis 

current LF load force 

M translator mass qv quadrature-axis 

voltage

damping coefficient dv direct-axis voltage 

The problem of position, speed, or current control becomes 

one of regulating error in the state variables to the origin. 

These state variable deviations are defined by 

dp xxx 11  , dp xxx 22

dq xix 33   ,  dd xix 44 .                (20)  

Since we are interested in the position control, the desired 

speed must be zero, and for maximum output force per ampere, 

the desired direct-axis current should alse be zero as 

042 dd xx .      

For the sake of simplified notation, we will set 
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Solving (20) for px , px , qi , and di  and substituting into 

(21) yields the new nonlinear state equations for LPMBDCM 

in the new coordinates in the following form 
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Since the state variable )(1 tx  represents the translational 

position error, the problem of position control of the motor is 

equivalent to regulating the states of (22) to the origin. Futher, 

with dx1  known, dx3 can be found from the solution of 

(22) in steady state form to yield 
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To design fuzzy controller, we change nonlinear model for 

LPMBDCM to T-S fuzzy model. The nonlinear equation 

representing the LPMBDCM can be converted into a linear 

form at the operating points, }{
40302010

xxxx
0

x  as (23).  
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In the experiments, the operating points are selected 

as }03.0003.0{10x , }5.005.0{20x ,

}02.002.0{30x  and }001.0001.0{40x .

Hence, the number of linearized models at the operating 

points is 36, which comprise the consequent part of each T-S 

fuzzy rule base (24) for the fuzzy model of LPMBDCM. In 

(24), the system and input gain matrices, idA  and dB  are 

obtained by discretizing each of linearized models and the 

membership functions are shown in Fig. 4. 
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The inferred in-out fuzzy model is  
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The following table presents the value of the physical 

parameters used in the experiment. 

Table 2. Physical parameters 

Parameters Value Unit 

M 2.09 kg 

0.01 M 

dL 0.006845 H 

qL 0.00385 H 

max 0.000058 Wb 

0.02 kg/s 

r 1.2

The fuzzy rules for the controller is designed as  
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( i= 4 k - 3 , 4 k - 2

k = 1 , 2 , … 9 )
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( i= 2 k - 1

K = 1 , 2 , … 1 8 )
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x 3

x 4

TOC : The Other Cases 

Fig. 4 Membership function 

Then, the controller can be inferred as  
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The problem of obtaining the control gain matrices, 

36213621 ,,,,, EEEDDD  guaranteeing the stability of 

the closed loop system is equivalent to the following LMI 

based problem. 

The problem of finding 0X  and 
3621 ,,, MMM

which satisfy following equation: 
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The matrices, X  and 
3621 ,,, MMM  in LMI’s are 

determined using a convex optimization technique offered by 

[15] and the control gains can be obtained from the our 

method.
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1PX

2584.1542511.961458.200084.255246.104982.52

2511.962894.625892.108435.525211.1249822.56

1458.205892.106866.4423866.24329.537727.220

0084.258435.523866.24416.4898423.696565.1

5246.105211.1244329.538423.694822.509680.61

4982.529821.567727.2206565.19680.610056.157

Figure 5 shows the experiment results without considering 

the network delay. The dotted line denotes the referenced 

signal and the solid line denotes the controlled LPMBDCM 

position. In this case, the controller based on the exact 

linearization of the model which has been presented in [16] 

was utilized. 

From the figures, one can see that the system was 

oscillating and the fuzzy controller can not accomplish the 

tracking control effectively. Figure 6 shows the control results 

using the proposed controller. As can be seen in these figures, 

the control is accomplished successfully. 
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Fig. 5 Control results using conventional PDC controller 
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Fig. 6 Control results using proposed controller 

(Position of LPMBDCM) 

6. CONCLUSIONS 

In this paper, we have developed a DFC framework for a 

class of systems with time-delay. Because the proposed 

controller was syncronized with the sampling time delayed 

with unit sampling period and predicted, the analysis and the 

design problem considering time-delay could be very easy. 

Convex optimization technique based on LMI has been 

utilized to solve the problem of finding stable feedback gains 

and a common Lyapunov function. Therefore the stability of 

the system was guaranteed in the existence of time-delay and 

the real-time control processing could be possible. To show 

the effectiveness and feasibility of the proposed controller we 

have developed a digital fuzzy control system for network 

control of LPMBDCM with time-delay induced by internet 

traffic. Through the experiments, we have shown that the 

proposed DFC could achieve the position control of a 

LPMBDCM successfully although a considerable network 

time-delay existed. 
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