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Abstract:

This paper presents the design methodology of digital fuzzy controller(DFC) for the systems with time-delay. We

propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the
design problem considering time-delay become easy because the proposed controller is syncronized with the sampling time. The
stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Convex
optimization techniques are utilized to solve the stable feedback gains and a common Lyapunov function for designed fuzzy
control system. To show the effectiveness the proposed control scheme, the network control example is presented.
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1. INTRODUCTION

The control problems for delayed systems have attention
over the last few decades since the time-delay is frequently a
source of instability and encountered in various engineering
systems. Extensive research has already been done in the
conventional control to find the solutions [1][2]. However, for
fuzzy control systems, there are few studies on the
stabilization = problem for especially systems with
time-delay[3][4]. A linear controller like PID controllers has a
short time-delay in calculating the output since its algorithm is
so simple. However, in the case of a complex algorithm like
fuzzy or neural networks, a considerable time-delay can occur
because so many calculations are needed to get the output.
Nevertheless, the most conventional discrete time fuzzy
controllers are the ideal controllers in which the time-delay is
not considered. Recently, to deal with the time-delay, the
design methods of the fuzzy control systems with higher order
have been proposed in [5]. However the structure of the
control system is very complex because the design of higher
order fuzzy rule-base is highly difficult.

In this paper, the digital fuzzy control system considering a
time delay is developed and its stability analysis and design
method are proposed. We use the discrete Takagi-Sugeno(TS)
fuzzy model and parallel distributed compensation(PDC)
conception for the controller[6-9]. And we follow the linear
matrix inequality(LMI) approach to formulate and solve the
problem of stabilization for the fuzzy controlled systems with
time-delay. The analysis and the design of the discrete time
fuzzy control systems by LMI theory are considered in
[10-12].

If the system has a considerable time-delay the analysis and
the design of the controller are very difficult since the
time-delay makes the output of the controller not synchronized
with the sampling time. We propose the PDC-type fuzzy
feedback controller whose output is delayed with unit
sampling period and predicted using current states and the
control input to the plant at previous sampling time. The
analysis and the design of the controller are very easy because
the output of the proposed controller is synchronized with the
sampling time. Therefore, the proposed control system can be
designed using the conventional methods for stabilizing the
discrete time fuzzy systems and the feedback gains of the
controller can be obtained using the concept of the LMI
feasibility problem. The proposed DFC is applied to network
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control through internet to verify the validity and the
effectiveness of the control scheme.

2. DISCRETE TS MODEL BASED FUZZY
CONTROL

In the discrete time TS fuzzy systems without control input,
the dynamic properties of each subspace can be expressed as
the following fuzzy IF-THEN rules[6].

Rulei: If x,(k)isM, ---and x,(k)is M, .
THEN x(k +1) = G x(k)

x(k) =[x, (k) x,(k) x, ()] en”
the state vector of the fuzzy system, r is the number of the
IF-THEN rules, and M; is fuzzy set.

If the state x(k) is given, the output of the fuzzy system
expressed as the fuzzy rules of Eq. (1) can be inferred as
follows.

1’2,... (1)

,r

where denotes

> w, (k)G x(k)
x(k+1) =2

Z w, (k)

where  w, (k) = li[M[j (x;(k)), h(k)=

=Y h (k)G x(k)

i=1

@

w, (k)

PRAL

A sufficient condition for ensuring the stability of the fuzzy
system(2) is given in Theorem 1.

Theorem 1 : The equilibrium point for the discrete time
fuzzy system (2) is asymptotically stable in the large if there
exists a common positive definite matrix P satisfying the
following inequalities.

G'PG,-P<0 , i=1,2,- 3)

,

Proof : The proof can be given in [7].

In the discrete time fuzzy system with control input to the
plant, the dynamic properties of each subspace can be
expressed as the following fuzzy [F-THEN rules.



Rulei: If x,(k)is M, ---and x,(k)is M, .
THEN x(k +1) = A, x(k) + B,u(k) :
x(k) =[x, (k) x,(k) x, (0] e
the state vector of the fuzzy system.
u(k) = [u, (k) u,(k) u, (k)] € R" denotes the input
of the fuzzy system.
7 is the number of the fuzzy IF-THEN rules, and M, is

the fuzzy set.
If the set of (x(k),u(k)) is given the output of the fuzzy
system (4) can be obtained as follows.

=1;2a“'3r(4)

where denotes

3 0, () (A (k) + BLu(k)}
x(k +1) = =1 .
Z w, (k)
:Zh,<k>{A,»x(k)+B,u<k>} 5)
where

w; (k)

> k)

In PDC, the fuzzy controller is designed distributively
according to the corresponding rule of the plant[9]. Therefore,
the PDC for the plant (4) can be expressed as follows.

Rule j: If x,(k)is M, ---and x, (k)is M,

Jj=12,--,r(6)
THEN u(k) = —F x(k)

The fuzzy controller output of Eq. (6) can be inferred as
follows.

w, (k) = H M, (x,(k)), and h (k) =

S 1, (k) Ex(k)
P —

Z w, (k)

where 4;(k) is the same function in Eq. (5).

==>"h,(k)F x(k)

J=1

0

Substituting Eq. (7) into Eq. (5) gives the following closed
loop discrete time fuzzy system.

x(k+1) = 2 h,(k){A x(k) - B, Z h, (K)F x(k)}

=SS b (k) by () (A, ~ BF jx(k)

i=l j=1
Defining G, =A, -B/F,

obtained.

®)

, the following equation is

x(k+1) = 3 1, (6) 1, (k) G, x(k)

r G, +G

+2Y h(k)h (k) —/—x(k

;,m_,(){ )

Applying Theorem 1 to analyze the stability of the discrete

time fuzzy system (9), the stability condition of Theorem 2
can be obtained.

&)

Theorem 2 : The equilibrium point of the closed loop
discrete time fuzzy system (9) is asymptotically stable in the
large if there exists a common positive definite matrix P which
satisfies the following inequalities for all i and j except the set
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(i, ) satisfying A (k)-h,(k)=0.

G/PG,-P<0 (10a)
G,+G; , G, +G, )
( 5 =)' P( ’2 —)-P<0, i<j (10b)
Proof : The proof can be given in [7].
If B=B, =B, =---=B, in the plant (5) is satisfied,

the closed loop system (8) can be obtained as follows.

x(k+1) = Z h, (k) A x(k) - Bi h, (k)F x(k)}

= (A, - BEx(H) = Y h0GX®) (1)

where G, = A, —-BF,
Hence, Theorem 1 can be applied to the stability analysis
of the closed loop system (11).

3. LMI APPROACH FOR FUZZY SYSTEM
DESIGN

To prove the stability of the discrete time fuzzy control
system by Theorem 1, the common positive definite matrix P
must be solved. LMI theory can be applied to solving P [13].
LMI theory is one of the numerical optimization techniques.
Many of the control problems can be transformed into LMI
problems and the recently developed Interior-point method
can be applied to solving numerically the optimal solution of
these LMI problems[14].

Definition 1 : Linear matrix inequility can be defined as
follows.

F(x)=F,+ ) xF >0

i=1

(12)

where x= [x1 X, xm]T is the parameter, the

symmetric matrices F,=F eR",i=0,---,m are given,

and the inequality symol “>0” means that F(x) is the
positive definite matrix.

LMI of Eq. (12) means the convex constraints for Xx.
Convex constraint problems for the various x can be expressed
as LMI of Eq. (12). LMI feasibility problem can be described
as follows.

LMI feasibility problem : The problem of finding x™
which satisfies F(x™")>0 or proving the unfeasibility in
the case that LMI F(x) >0 is given.

If the design object of a controller is to guarantee the
stability of the closed loop system (2), the design of the PDC
fuzzy controller(4) is equivalent to solving the following LMI
feasibility problem using Schur complements[13].

LMI feasibility problem equivalent to the PDC design

problem The problem of finding X>0 and
M,,M,,---,M, which satisfy the following equations.
X AX-BM,}"
A, M >0 i=12,-,r
AX-BM, X

where X=P' M, =FX,M, =FX,---,and M, =FX.

The feedback gain matrices F,,F,,---,F. and the common

positive definite matrix P can be given by the LMI
solutions, X and M,,M,,---,M_, as follows.

P=X"', F=MX"', F,=M,X",.-,and F, =M X"



4. DIGITAL FUZZY CONTROL SYSTEM
CONSIDERING TIME-DELAY

In a real control system, a considerable time-delay can
occur due to a communication and a controller. Let 7 be
defined as the sum of all this time-delay. In the case of the real
system, the ideal fuzzy controller of Eq. (3) can be described
as follows due to the time-delay.

Rule j: If x,(kT)is M, ---and x, (kT)is M,

THEN u(kT + 7) = —F x(kT)
j:1>25'”9r (13)
Because the time-delay makes the output of controller
not synchronized with the sampling time, Theorem 1 can not
be applied to this system. Therefore the analysis and the
design of the controller are very difficult. In this paper, DFC
which has the following fuzzy rules is proposed to consider
the time-delay of the fuzzy plant (1).
Rule j: If x,(k)is M, ---and x,(k)is M,
THEN u(k +1) =D u(k) + E x(k) 7
The output of DFC (14) is inferred as follows.

iwl.(k) D, u(k) + E x(k)}

L2,-,r (14)

u(k+1)== -
2w,
= Zr:h/.(k) {D u(k)+E x(k)} (15)

The output timing of a ideal controller, a delayed controller,
and the proposed controller is shown in the Fig. 1. In the ideal
controller, it is assumed that there is no time-delay. If this
controller is implemented in real systems the time-delay 7z is
added like Eq. (13). The analysis and the design of this system
with delayed controller are very difficult since the output of
controller is not syncronized with the sampling time.

On the other hand, the analysis and the design of the
proposed controller are very easy because the controller output
is syncronized with the sampling time delayed with unit
sampling period.

Ideal Controller ~ Delayed Controller ~ Proposed Controller

>

time

Time Delay t

Sampling Time T
kT kT+t (k+1)T

Fig. 1. Output Timing of the Controllers

Combining the fuzzy plant (2) with the DFC (15), the
closed loop system is given as follows.

x(k+1)] & A, B, | x(k)
L(kn)}_;h"(k){& D,}L(k)} (e
x(k)

Defining the new state vector as w(k) =
u(k)

} , the closed

loop system (16) can be modified as

w(k+1)= ih, (0G w(k) (17)

i=1

A, B,
where G, =|_ " '
E, D,

Hence, the stability condition of the closed loop system
(17) becomes the same as the sufficient condition of Theorem
1 and the stability can be determined by solving LMI
feasibility problem about the stability condition of Theorem 1.
Also, the design problem of the DFC guaranteeing the stability
of the closed loop system can be transformed into LMI
feasibility problem. To do this, the design problem of the DFC
is transformed into the design problem of the PDC fuzzy
controller.

PDC design problem equivalent to DFC design problem :
The problem of designing the PDC fuzzy controller

v(k)=—Zhj(k)fjw(k) in the case that the fuzzy plant

j=1

w(k+1) = Z h,(k){A w(k)+ Bv(k)} is given.

i=1

— A, B | — [0 —
where A, =| ' ‘|, B= , and F.:f[E. D.
0 0 I

Therefore, using the same notation in section 3, the design
problem of the DFC can be equivalent to the following LMI
feasibility problem.

LMI feasibility problem equivalent to DFC design
problem :
The problem of finding X>0 and M, ,M,,---.M

which satisfy following equation.

r

X {(AX-BM,}"
—w = 0, i=1,2,--,r
AX-B M, X
where X=P"', M, =FX, M,=FX , -, and
M, =FX

The feedback gain matrices E,E,m,ﬁ and the

common positive definite matrix P can be given by the LMI
solutions, Xand M ,M,,---,M , as follows.

P=X"F=MX"',F,=M,X"',-- F =M X' (I8

Therefore, the control gain matrices
D,,--,D,E,,---,E,  of the proposed DFC can be obtained

from the feedback gain matrices F,,F,,---,F. .

M

5. APPLICATIONS TO NETWORK CONTROL
VIA INTERNET

We have shown an analysis technique of the proposed DFC
under the condition that time-delay exists in section 4. We
apply the controller to network control system with time-delay
caused by internet communication. The overall control
configuration is shown in Fig. 2. The block diagram of the
control system is shown by Fig. 3. In this figure, the actuator
that we will control is a linear permanent magnet brushless
DC motor (LPMBDCM) with 3 phase.
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Fig. 2 Linear permanent magnet brushless DC motor

X ir irect-axi
4a | desired  direct-axis F, load force
current
uadrature-axis
M | translator mass V, 301 tage
B damping coefficient v, direct-axis voltage

system
Actuator u(t) x(t) Sensor
Process
node node
] Internet
| z_ca Tsc —
1 L
TC
Controller
. . ) node
T= 7"+ +7"

Fig. 3 Block diagram of control system

The state variable model for the LPMBDCM is given by

(19) [16].
de, .
a7
, -B. =« . 3z . F
TR AR LA Py T ]
L, 6ri(x,)
—Z—sm—
o M T
diq r T Ld . 3 T ﬂ’max Vq
R e
q q T4 q
di r N
—L= i+ =i+ (19)
dt L, T L, L,
Table 1. Parameters of LPMBDCM
X, | traslational position T pole pitch
X,y | desired translational | , quadrature-axis
position 4 inductance
56p translator speed L, direct-axis inductance
X,,4 | desired translational L, direct-axis inductance
speed
i quadrature-azis 1 maximum value of
i current max | flux linkages
X desired
34 | quadrature-axis r phase resistance
current
i, | direct-axis current F, Valug of the i th
cogging force
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The problem of position, speed, or current control becomes
one of regulating error in the state variables to the origin.
These state variable deviations are defined by

X=Xy =Xig > X =X, T Xy
(20)
Since we are interested in the position control, the desired

speed must be zero, and for maximum output force per ampere,
the desired direct-axis current should alse be zero as

Xpq = X4q = 0.

Xy =0, =Xy, Xy =iy =Xy

For the sake of simplified notation, we will set

T 3z
kl =E(Ld _Lq) ; k2 = Eﬁlmax;
L
k =—£;k4 =l g =T
M Lq T Lq
A L
ke =— gzﬂ;k7 LY
27 L, L, T L,
F, F 67i(x; +x,,)
ko; z_ﬁ;km =_ﬁL;a)i = e @1
Solving (20) for x, X b iq ,and i, and substituting into

(21) yields the new nonlinear state equations for LPMBDCM
in the new coordinates in the following form

X() = f(x0) + 2w, (g

X5

4
kyx, + koxeyx, + ke, (o + x,) + ke x, + Zkgi sinwi + k,,
i=1
kyx; + ksx,x, + kgx,
kx4 kgx,xs + kyx,x,,

00 f
00 k4x3d + L_
+ 10 V 4 22)
—d
101 L,

Since the state variable x,(¢) represents the translational
position error, the problem of position control of the motor is
equivalent to regulating the states of (22) to the origin. Futher,
with x,, known, X;,can be found from the solution of
(22) in steady state form to yield

&k, . 6rix k

Xy = Z—lsm(—'d)+i.

P 2 T k,

To design fuzzy controller, we change nonlinear model for

LPMBDCM to T-S fuzzy model. The nonlinear equation

representing the LPMBDCM can be converted into a linear
form at the operating points, X, ={x,, X,, X;, X,,} as(23).




9 (x) 94 (%) 9 (x) 9 (%)
ox, Ox, Ox; Ox,
9 o, X o Kx) o (x) 00
. ox, Ox, Ox, Ox, 00
Clrwamwamam | Mot #
ox, Ox, Ox; Ox, 01
() () o, (%) ofi (%)
ox, Ox, Ox;, Ox, |x=x

L - 0

In the experiments, the operating points are selected
as x,, €{-0.03 0 0.03} , X, €{-0.5 0 0.5} ,
X, €{-0.02 0.02} and x, €{-0.001 0.001}.

Hence, the number of linearized models at the operating
points is 36, which comprise the consequent part of each T-S
fuzzy rule base (24) for the fuzzy model of LPMBDCM. In

(24), the system and input gain matrices, Aid and B 4 are

obtained by discretizing each of linearized models and the

membership functions are shown in Fig. 4.

Rule i: If x,(k)is M, and x,(k)is M, and x,(k)is M ;and x,(k)is M,
THEN x(k +1) = A x(k)+B u(k)

i=1,2,--,36 (24)
The inferred in-out fuzzy model is
36
D wi(k){A ,x(k) + B u(k)}
x(k +1) == -
D (k)
i=1
36
=Y h(k){A ,x(k)+B u(k)} (25)
i=1

The following table presents the value of the physical
parameters used in the experiment.

Table 2. Physical parameters

Parameters Value Unit
M 2.09 kg

T 0.01 M
L, 0.006845 H

L, 0.00385 H
Arna 0.000058 Wb
Y] 0.02 kg/s
r 1.2 Q

The fuzzy rules for the controller is designed as

X

M\Z Mll
(i=1-4, 25-28 (i=5-8,29-32 TOC
,13-16) ,17-20)
1
u T T X,
-0.5 0 0.5
Mv3
(i=4k-3,4k-2 TOC
k=1,2....9)
1
} } X3
-0.02 0.02
MM
(i=2k-1 TOC
K=1.2,..18)
1
u T X4
-0.001 0.001

TOC : The Other Cases
Fig. 4 Membership function

Then, the controller can be inferred as

30 (D (k) + E,x(6)}
2wk

=3 h () D,k + Ex()}

The problem of obtaining the control gain matrices,
D,,D,,---Dy ,E|,E,,---E,, guaranteeing the stability of
the closed loop system is equivalent to the following LMI
based problem.

u(k+1) ==

@7

The problem of finding X>0 and M M,,---.M

36

which satisfy following equation:

Rule i: If x,(k)is M, and x,(k)is M,, and x,(k)is M, and x, (k) is M,
THEN u(k +1) = D,u(k)+E x(k)

i=1,2,--,36 (26)
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X {AX-BM,}’ o
AX-BM, X ’
— [A, B, — [o
where A, = and B = , i=1,2,---,36,
0 0 I
X=p" > Mlzflx > M2=F2X s T M36=E6X >
F=[E D] (28)

in LMI’s are

determined using a convex optimization technique offered by
[15] and the control gains can be obtained from the our
method.

The matrices, X and M,,M,,---,M

> 36



X=P"
157.0056  61.9680 —1.6565 220.7727 56.9821  52.4982
61.9680  50.4822  69.8423  53.4329 124.5211 -10.5246
—1.6565 69.8423 489.4416 -2.3866 52.8435  25.0084
712207727 534329 -23866 442.6866 10.5892  20.1458
56.9822 1245211 52.8435 10.5892  62.2894 —-96.2511
524982 -10.5246 25.0084  20.1458 —96.2511 154.2584

Figure 5 shows the experiment results without considering
the network delay. The dotted line denotes the referenced
signal and the solid line denotes the controlled LPMBDCM
position. In this case, the controller based on the exact
linearization of the model which has been presented in [16]
was utilized.

From the figures, one can see that the system was
oscillating and the fuzzy controller can not accomplish the
tracking control effectively. Figure 6 shows the control results
using the proposed controller. As can be seen in these figures,
the control is accomplished successfully.

Position [m]

time [sec]
Fig. 5 Control results using conventional PDC controller
(Position of LPMBDCM)

Position [m]

time [sec]

Fig. 6 Control results using proposed controller
(Position of LPMBDCM)

6. CONCLUSIONS

In this paper, we have developed a DFC framework for a
class of systems with time-delay. Because the proposed
controller was syncronized with the sampling time delayed
with unit sampling period and predicted, the analysis and the
design problem considering time-delay could be very easy.
Convex optimization technique based on LMI has been
utilized to solve the problem of finding stable feedback gains
and a common Lyapunov function. Therefore the stability of
the system was guaranteed in the existence of time-delay and
the real-time control processing could be possible. To show
the effectiveness and feasibility of the proposed controller we
have developed a digital fuzzy control system for network
control of LPMBDCM with time-delay induced by internet
traffic. Through the experiments, we have shown that the
proposed DFC could achieve the position control of a
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LPMBDCM successfully although a considerable network
time-delay existed.

REFERENCES

Horowitz, 1. “Some properties of delayed controls”, Int.
J. Contr., Vol.38, No.5, pp. 977-990, 1983

Leva, A., C. Maffezzoni and R. Scattolini, “Self-tuning
PI-PID regulators for stable systems with varying
delay”, Automatica, Vol.30, No.7, pp.1171-1183, 1994
Kim, J.H., J.H. Park and S.W. Lee, “A two-layered
fuzzy logic controller for systems with deadzones”,
IFSA’93 World Congress, Seoul, Korea, pp.826-829,
July 1993

Jang, M.J. and C.L. Chen, “Fuzzy successive modelling
and control for time-delay systems”, International
Journal of Systems Science, Vol.27, No.12,
pp.1483-1486, 1996

Li, HX. and S.K. Tso, “Higher order fuzzy control
structure for higher order or time-delay systems”, IEEE
Trans. Fuzzy Systems, Vol.7, No.5, pp.540-542, 1999
Takagi, T. and M. Sugeno, “Fuzzy identification of
systems and its applications to modeling and control”,
IEEE Trans. Systems, Man, and Cybernetics, Vol.15,
No.1, pp. 116-132, 1985

Tanaka K. and M. Sugeno, “Stability analysis and
design of fuzzy control systems”, Fuzzy Sets and
Systems, Vol.45, No.2, pp.135-156, 1992

Ting, C.S., T.H.S. Li and F.C. Kung, “An approach to
systematic design of fuzzy control system”, Fuzzy Sets
and Systems, Vol.77, pp.151-166, 1996

Tanaka, K. and M. Sano “A robust stabilization problem
of fuzzy control systems and its application to backing
up control of a truck-trailer”, IEEE Trans. Fuzzy
Systems, Vol.2, No.2, pp.119-133, 1994

Wang, H.O., K. Tanaka and M.F. Griffin, “An approach
to fuzzy control of nonlinear systems: Stability and
design issues”, IEEE Trans. Fuzzy Systems, Vol.4, No.1,
pp. 14-23, 1996

Tanaka, K., T. Kosaki and H.O. Wang, “Backing control
problem of a mobile robot with multiple trailers: fuzzy
modeling and LMI-based design”, IEEE Trans. Fuzzy
Systems, Vol.28, No.3, pp.329-337, 1998

Kiriakidis, K. ‘“Non-linear control system design via
fuzzy modelling and LMIs”, Int. J. Control, Vol.72 ,
No.7, pp.676-685, 1999

Boyd, S., L.E. Ghaoui, E. Feron and V. Balakrishnan,
“Linear matrix inequalities in systems and control
theory”, SIAM, Philadelphia, 1994

Nesterov, Y. and A. Nemirovsky, “Interior-point
polynomial methods in convex programming”, SIAM,
Philadelphia, 1994

Gahinet, P., A. Nemirovski, A. Laub, and M. Chilali,
“LMI Control Toolbox”, The MathWorks, Inc., Natick,
1995

Parviz Famouri, “Control of a Linear Permanent Magnet
Brushless DC Motor Via Exact Linearization Methods”,
IEEE Trans. On Energy Conversion, Vol.7, No.3,
pp.544-551, 1992

[10]

[11]

[12]

[13]

[14]

[15]

[16]



	Main Menu
	Previous Menu
	Search CD-ROM
	Print



