• Title/Summary/Keyword: delay distribution

Search Result 528, Processing Time 0.024 seconds

Distribution of Critical Path Delays in a Combinatorial Circuit

  • Yanagi, Daigo;Tsukiyama, Shuji
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1300-1303
    • /
    • 2002
  • In this paper, we consider how to treat delay-time uncertainties caused by inter-die and intradie variabilities in evaluating the distribution of the critical delay of a CMOS combinatorial circuit, and formulate inter-die variability as a correlation of delays. Then, we propose an algorithm to evaluate the distribution of the critical delay based on the algorithm in [1] which takes correlations into account. We also show some experimental results to see the effect of the formulation.

  • PDF

A GHz-Level RSFQ Clock Distribution Technique with Bias Current Control in JTLs

  • Cho W.;Lim J.H.;Moon G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.17-19
    • /
    • 2006
  • A novel clock distribution technique for pipelined-RSFQ logics using variable Bias Currents of JTLs as delay-medium is newly proposed. RSFQ logics consist of several logic gates or blocks connected in a pipeline structure. And each block has variable delay difference. In the structure, this clock distribution method generates a set of clock signals for each logic blocks with suitable corresponding delays. These delays, in the order of few to tens of pS, can be adjusted through controlling bias current of JTL of delay medium. While delays with resistor value and JJ size are fixed at fabrication stage, delay through bias current can be controlled externally, and thus, is heavily investigated for its range as well as correct operation within current margin. Possible ways of a standard delay library with modular structure are sought for further modularizing Pipelined-RSFQ applications. Simulations and verifications are done through WRSpice with Hypres 3-um process parameters.

SPMLD: Sub-Packet based Multipath Load Distribution for Real-Time Multimedia Traffic

  • Wu, Jiyan;Yang, Jingqi;Shang, Yanlei;Cheng, Bo;Chen, Junliang
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.548-558
    • /
    • 2014
  • Load distribution is vital to the performance of multipath transport. The task becomes more challenging in real-time multimedia applications (RTMA), which impose stringent delay requirements. Two key issues to be addressed are: 1) How to minimize end-to-end delay and 2) how to alleviate packet reordering that incurs additional recovery time at the receiver. In this paper, we propose sub-packet based multipath load distribution (SPMLD), a new model that splits traffic at the granularity of sub-packet. Our SPMLD model aims to minimize total packet delay by effectively aggregating multiple parallel paths as a single virtual path. First, we formulate the packet splitting over multiple paths as a constrained optimization problem and derive its solution based on progressive approximation method. Second, in the solution, we analyze queuing delay by introducing D/M/1 model and obtain the expression of dynamic packet splitting ratio for each path. Third, in order to describe SPMLD's scheduling policy, we propose two distributed algorithms respectively implemented in the source and destination nodes. We evaluate the performance of SPMLD through extensive simulations in QualNet using real-time H.264 video streaming. Experimental results demonstrate that: SPMLD outperforms previous flow and packet based load distribution models in terms of video peak signal-to-noise ratio, total packet delay, end-to-end delay, and risk of packet reordering. Besides, SPMLD's extra overhead is tiny compared to the input video streaming.

Analysis of Delay Performance for QoS Support in Wireless Networks (무선 네트워크에서 Qos 보장을 위한 딜레이 성능 분석)

  • Kim Jenog Geun;Cho Jin Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10B
    • /
    • pp.831-840
    • /
    • 2004
  • Providing quality of service (QoS) guarantees over wireless link requires thorough understanding and quantification of the interactions among the traffic source, the wireless channel, and the underlying error control mechanisms. In this paper, we account for such interactions in a network-layer model that we use to investigate the delay performance of a wireless channel. We consider a single ON/OFF traffic stream transported over a wireless link. The capacity of this link fluctuates according to a fluid version of Gilbert-Elliot's model. We derive the packet delay distribution via two different approaches: uniformization and Laplace transform. Numerical aspects of both approaches are compared. The delay distribution is further used to quantify the wireless effective bandwidth under a given delay guarantee. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control and bandwidth allocation on the packet delay performance. Wireless networks, QoS, delay distribution, fluid analysis.

Analysis of Delay Distribution and Rate Control over Burst-Error Wireless Channels

  • Lee, Joon-Goo;Lee, Hyung-Keuk;Lee, Sang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.355-362
    • /
    • 2009
  • In real-time communication services, delay constraints are among the most important QoS (Quality of Service) factors. In particular, it is difficult to guarantee the delay requirement over wireless channels, since they exhibit dynamic time-varying behavior and even severe burst-errors during periods of deep fading. Channel throughput may be increased, but at the cost of the additional delays when ARQ (Automatic Repeat Request) schemes are used. For real-time communication services, it is very essential to predict data deliverability. This paper derives the delay distribution and the successful delivery probability within a given delay budget using a priori channel model and a posteriori information from the perspective of queueing theory. The Gilbert-Elliot burst-noise channel is employed as an a Priori channel model, where a two-state Markov-modulated Bernoulli process $(MMBP_2)$ is used. for a posteriori information, the channel parameters, the queue-length and the initial channel state are assumed to be given. The numerical derivation is verified and analyzed via Monte Carlo simulations. This numerical derivation is then applied to a rate control scheme for real-time video transmission, where an optimal encoding rate is determined based on the future channel capacity and the distortion of the reconstructed pictures.

Analysis of Load Transmission Characteristics for Automobile Helical Gear (자동차 헬리컬기어의 하중전달 특성해석)

  • Park, C.I.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Optimal Maintenance Policy for Fishing Vessel Equipment Using Delay Time Analysis

  • Jung, Gi-Mun;Kwon, Young-Sub;Anand Pillay;Jin Wang
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.11a
    • /
    • pp.329-333
    • /
    • 2000
  • Delay time analysis is a pragmatic mathematical concept readily embraced by engineers which has been developed as a means to model maintenance decision problem. This paper considers an inspection period using delay time analysis for fishing vessel equipment. We assume that delay time distribution is Weibull and inspections are perfect. In this paper, we determine the optimal inspection period which minimize the expected downtime per unit time.

  • PDF

Performance Evaluation of Myopic Policy for Dynamic Spectrum Access (동적 스펙트럼 접속을 위한 myopic 방식의 성능 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1101-1105
    • /
    • 2013
  • Due to underutilization of spectrum under the current static spectrum management policy, various kinds of dynamic spectrum access strategies have appeared. Myopic policy is a simple policy with reduced complexity that maximizes the immediate throughput. In this paper, the distribution of its medium access delay is evaluated under saturation traffic conditions. Using the distribution of the medium access delay, we also evaluate its system delay under non-saturated traffic conditions.

Downtime Optimization for Fishing Vessel Equipment Using Delay Time Analysis

  • Jung, Gi-Mun;Kwon, Young-Sub;Anand Pillay;Jin Wang
    • International Journal of Reliability and Applications
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2001
  • Delay time analysis is a pragmatic mathematical concept readily embraced by engineers which has been developed as a means to model maintenance decision problem. This paper considers an inspection period using delay time analysis for fishing vessel equipment. We assume that delay time has a Weibull distribution. In this paper, we determine the optimal inspection period which minimize the expected downtime per unit time. Explicit solutions for the optimal inspection are presented for illustrative purposes.

  • PDF

Deadline-Aware Routing: Quality of Service Enhancement in Cyber-Physical Systems (사이버물리시스템 서비스 품질 향상을 위한 데드라인 인지 라우팅)

  • Son, Sunghwa;Jang, Byeong-Hoon;Park, Kyung-Joon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.9
    • /
    • pp.227-234
    • /
    • 2018
  • Guaranteeing the end-to-end delay deadline is an important issue for quality of service (QoS) of delay sensitive systems, such as real-time system, networked control system (NCS), and cyber-physical system (CPS). Most routing algorithms typically use the mean end-to-end delay as a performance metric and select a routing path that minimizes it to improve average performance. However, minimum mean delay is an insufficient routing metric to reflect the characteristics of the unpredictable wireless channel condition because it only represents average value. In this paper, we proposes a deadline-aware routing algorithm that maximizes the probability of packet arrival within a pre-specified deadline for CPS by considering the delay distribution rather than the mean delay. The proposed routing algorithm constructs the end-to-end delay distribution in a given network topology under the assumption of the single hop delay follows an exponential distribution. The simulation results show that the proposed routing algorithm can enhance QoS and improve networked control performance in CPS by providing a routing path which maximizes the probability of meeting the deadline.