DOI QR코드

DOI QR Code

사이버물리시스템 서비스 품질 향상을 위한 데드라인 인지 라우팅

Deadline-Aware Routing: Quality of Service Enhancement in Cyber-Physical Systems

  • 손성화 (대구경북과학기술원 정보통신융합전공) ;
  • 장병훈 ((주)텐일레븐) ;
  • 박경준 (대구경북과학기술원 정보통신융합전공)
  • 투고 : 2018.04.19
  • 심사 : 2018.06.26
  • 발행 : 2018.09.30

초록

실시간 시스템, 네트워크 제어 시스템, 사이버물리시스템과 같이 지연에 민감한 시스템의 서비스 품질을 위해 종단 간 지연 데드라인을 보장하는 것은 중요하다. 대부분의 라우팅 알고리즘은 일반적으로 종단 간 평균 지연을 성능 메트릭으로 사용하고 평균 성능 향상을 위해 이를 최소화하는 라우팅 경로를 선택한다. 하지만 최소 평균 지연은 평균값만을 나타내기 때문에 예측할 수 없는 무선 채널의 특성을 반영하기에 불충분한 라우팅 메트릭이다. 본 논문에서는 평균 지연보다는 평균 분포를 고려하여 사이버물리시스템의 주어진 데드라인 내에 패킷이 도착할 확률을 최대화하는 데드라인 인지 라우팅 알고리즘을 제안한다. 제안한 라우팅 알고리즘은 단일 홉 지연이 지수 분포를 따른다는 가정 하에 주어진 네트워크 토폴로지에서 종단 간 지연 분포를 구성한다. 시뮬레이션 결과는 제안한 라우팅 알고리즘이 데드라인을 만족할 확률을 최대화 하는 라우팅 경로를 제공하여 사이버물리시스템의 서비스 품질과 네트워크 제어 성능을 향상시킬 수 있음을 보여준다.

Guaranteeing the end-to-end delay deadline is an important issue for quality of service (QoS) of delay sensitive systems, such as real-time system, networked control system (NCS), and cyber-physical system (CPS). Most routing algorithms typically use the mean end-to-end delay as a performance metric and select a routing path that minimizes it to improve average performance. However, minimum mean delay is an insufficient routing metric to reflect the characteristics of the unpredictable wireless channel condition because it only represents average value. In this paper, we proposes a deadline-aware routing algorithm that maximizes the probability of packet arrival within a pre-specified deadline for CPS by considering the delay distribution rather than the mean delay. The proposed routing algorithm constructs the end-to-end delay distribution in a given network topology under the assumption of the single hop delay follows an exponential distribution. The simulation results show that the proposed routing algorithm can enhance QoS and improve networked control performance in CPS by providing a routing path which maximizes the probability of meeting the deadline.

키워드

참고문헌

  1. K.-J. Park, R. Zheng, and X. Liu "Cyber-physical systems: Milestones and research challenges," Elsevier Computer Communications, Vol.36, No.1, pp.1-7, 2012. https://doi.org/10.1016/j.comcom.2012.09.006
  2. L. G. Bushnell, "Networks and control," IEEE Control Systems Magazine, Vol.21, No.1, pp.22-23, 2001. https://doi.org/10.1109/MCS.2001.898789
  3. D. Medhi and K. Ramasamy, "Network routing: algorithms, protocols, and architectures," Morgan Kaufmann, 2010.
  4. H. Li, Y. Cheng, C. Zhou, and W. Zhuang, "Minimizing end-to-end delay: A novel routing metric for multi-radio wireless mesh networks," in Proceedings of INFOCOM, pp.46-54, 2009.
  5. R. Bellman, "On a routing problem," Quarterly of applied mathematics, Vol.16, No.1, pp.87-90, 1958. https://doi.org/10.1090/qam/102435
  6. E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische mathematik, Vol.1, No.1, pp.269-271, 1959. https://doi.org/10.1007/BF01386390
  7. A. Malik, J. Qadir, B. Ahmad, K.-L. A. Yau, and U. Ullah, "QoS in IEEE 802.11-based wireless networks: A comtemporary review," Journal of Network and Computer Applications, Vol.55, pp.24-46, 2015. https://doi.org/10.1016/j.jnca.2015.04.016
  8. K.-J. Park, J. Kim, H. Lim, and Y. Eun, "Robust path diversity for network quality of service in cyber-physical systems," IEEE Transactions on Industrial Informatics, Vol.10, No.4, pp.2204-2215, 2014. https://doi.org/10.1109/TII.2014.2351753
  9. A. Alanazi and K. Elleithy, "Real-time QoS routing protocols in wireless multimedia sensor networks: Study and analysis," Sensors, Vol. 15, No. 9, pp. 22209-22233, 2015. https://doi.org/10.3390/s150922209
  10. X. M. Zhang, Y. Zhang, F. Yan, and A. V. Vasilakos, "Interference-based topology control algorithm for delay- constrained mobile ad hoc networks," IEEE Transactions on Mobile Computing, Vol.14, No.4, pp.742-754, 2015. https://doi.org/10.1109/TMC.2014.2331966
  11. S. Lim, H. Balakrishnan, D. Gifford, S. Madden, and D. Rus, "Stochastic motion planning and applications to traffic," The International Journal of Robotics Research, Vol.30, No.6, pp.699-712, 2011. https://doi.org/10.1177/0278364910386259
  12. E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher, "Stochastic shortest paths via quasi-convex maximization," in European Symposium on Algorithms, Springer, pp.552- 563, 2006.
  13. E. Nikolova, M. Brand, and D. R. Karger, "Optimal route planning under uncertainty," ICAPS, Vol.6, pp.131-141, 2006.
  14. K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, "Measurement and analysis of single-hop delay on an IP backbone network," IEEE Journal on Selected Areas in Communications, Vol.21, No.6, pp.908-921, 2003. https://doi.org/10.1109/JSAC.2003.814410
  15. A. Di Pietro, D. Ficara, S. Giordano, F. Oppedisano, and G. Procissi, "End-to-end inference of link level queueing delay distribution and variance," in Proceedings of IEEE International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp.503-510, 2008.
  16. P. Fransson and A. Jonsson, "End-to-end measurements on performance penalties of IPv4 options," in Proceedings of Global Telecommunications Conference (GLOBECOM), Vol.3, pp.1441-1447, 2004.
  17. MATLAB version 8.1.0.604 (R2013a), The Mathworks, Inc., Natick, Massachusetts, 2013.