• Title/Summary/Keyword: degree-of-freedom control

Search Result 753, Processing Time 0.025 seconds

The Implementation and limits of Involuntary Detention of the Tuberculosis Prevention Act (결핵예방법의 격리명령의 실행과 한계에 관하여)

  • Kim, Jang Han
    • The Korean Society of Law and Medicine
    • /
    • v.16 no.2
    • /
    • pp.55-84
    • /
    • 2015
  • The tuberculosis is the infectious disease. Generally, the active tuberculosis patient can infect the 10 persons for one year within the daily activities like casual conversation and singing together. The infectivity of tuberculosis can continue for a life time, and infected persons can remain at risk for developing active tuberculosis. To control this contagious disease, along with the active tuberculosis patients, non-infectious but non-compliant patients who can be infectious if their immune systems become impaired have to be managed. To control the non-complaint patients, medical treatment order should be combined with the public order. Because tuberculosis is the risk of community health, the human rights like liberty and freedom of movement can be restricted for public welfare under the article 37(2) of constitution. Even when such restriction is imposed, no essential aspect of the freedom or right shall be violated. The degree of restriction on the rights of citizens is different what methods are chosen to non-complaint patients. For example, under the directly observed therapy program, the patients and medical staffs make an appointment and meet to confirm the drug intakes according to the schedule, which is the medical treatment combined with the mildest public order. If the patients break the appointments or have the history of disobedient, the involuntary detention can obtain the legitimate cause. The Tuberculosis Prevention Act has the two step programs on this involuntary detention, The admission order (Article 15) is issued when the patients are infectious. The quarantine order (Artle 15-2) is issued when the patients are infectious and non-complaint. The legal criteria for involuntary detention are discussed and published through the international conventions and covenants. For example, World Health Organization had made guidance on human rights and involuntary detention for tuberculosis control. The restrictions should be carried out in accordance with the our law and in the legitimate objective of public interest. And the restriction should be based on scientific evidence and not imposed in an unreasonable or discriminatory manner. We define and adopt these international criteria under our constitution and legal system. Least restrictive alternative principle, proportionality principle and the individual evaluation methods are explained through the reviews of United States court decisions. Habeas Corpus Act is reviewed and adopted as the procedural due process to protect the patient rights as a citizen. Along with that, what conditions and facilities which are needed to performed quarantine order are discussed.

  • PDF

Design of FIR Halfband Filters using Generalized Lagrange Polynomial (일반화된 라그랑지 다항식을 사용하는 FIR 하프밴드 필터 설계)

  • Bong, Jeongsik;Jeon, Joonhyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.188-198
    • /
    • 2013
  • Maximally flat (MAXFLAT) half-band filters usually have wider transition band than other filters. This is due to the fact that the maximum possible number of zeros at $z={\pm}1$ is imposed, which leaves no degree of freedom, and thus no independent parameters for direct control of the frequency response. This paper describes a novel method for the design of FIR halfband filters with an explicit control of the transition-band width. The proposed method is based on a generalized Lagrange halfband polynomial (g-LHBP) with coefficients parametizing a 0-th coefficient $h_0$, and allows the frequency response of this filter type to be controllable by adjusting $h_0$. Then, $h_0$ is modeled as a steepness parameter of the transition band and this is accomplished through theoretically analyzing a polynomial recurrence relation of the g-LHBP. This method also provides explicit formulas for direct computation of design parameters related to choosing a desired filter characteristic (by trade-off between the transition-band sharpness and passband & stopband flatness). The examples are shown to provide a complete and accurate solution for the design of such filters with relatively sharper transition-band steepness than MAXFLAT half-band filters.

Dynamics modeling and performance analysis for the underwater glider (수중 글라이더의 운동특성을 고려한 동역학 모델링 및 운동성능 해석)

  • Nam, Keon-Seok;Bae, Jae-Hyeon;Jeong, Sang-Ki;Lee, Shin-Je;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.709-715
    • /
    • 2015
  • Underwater gliders do not typically have separate propellers for forward motion. They generate propulsive forces based on the difference between their buoyancy and gravity. They can control the volume from the buoyancy engine to adjust the propulsive force. In addition, the attitude of the underwater glider is controlled by a rubberless motion controller. The motion controller can change the mass center and moment of inertia of the inner moving mass. Owing to the change in these parameters, the attitude of the underwater glider is changed. In this study, we derive nonlinear, six degree of freedom (DOF) mathematical models for the motion controller and buoyancy engine. Using these equations, we perform dynamic simulations of the proposed underwater glider, and verify the suitability of the design and dynamic performances of the proposed underwater glider. We then perform the motion control simulation for the pitch and roll angle, and analyze the dynamic performance according to the pitch and roll angles.

Development of the Small Scale Testbed for Running Dynamic Characteristics Analysis of the Capsule Train (캡슐트레인 주행 동특성 분석을 위한 축소 시험장치의 개발)

  • Lee, Jin-Ho;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.643-651
    • /
    • 2020
  • A capsule train runs inside a sub-vacuum tube and can reach very high speed due to the low air resistance. A capsule train uses a superconducting electrodynamic suspension (SC-EDS) method for levitation, which allows for a large levitation gap and does not require gap control. However, SC-EDS has inherent characteristics such as the large gap variation and a small damping effect in the levitation force, which can degrade the running stability and ride comfort. To overcome this, a stability improvement device should be designed and applied based on dynamic analysis. In this study, a 1/10 small-scale testbed was developed to replicate the dynamic characteristics of a capsule train and investigate the performance of stability improvement devices. The testbed is composed of a 6-degree-of-freedom Stewart platform for the realization of bogie motion, a secondary suspension with a running stabilization device, and a carbody. Based on the dynamic similarity law proposed by Jaschinski, the small-scale testbed was manufactured, and a bogie motion algorithm was applied with the consideration of guideway irregularity and levitation stiffness. The experimental results from the testbed were compared with simulation results to investigate the performance of the testbed.

A Study on Shape Optimization of Distributed Actuators using Time Domain Finite Element Method (시간유한요소법을 이용한 분포형 구동기의 형상최적화에 관한 연구)

  • Suk, Jin-Young;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.56-65
    • /
    • 2005
  • A dynamic analysis method that freezes a time domain by discretization and solves the spatial propagation equation has a unique feature that provides a degree of freedom on spatial domain compared with the space discretization or space-time discretization finite element method. Using this feature, the time finite element analysis can be effectively applied to optimize the spatial characteristics of distributed type actuators. In this research, the time domain finite element method was used to discretize the model. A state variable vector was used in the discretization to include arbitrary initial conditions. A performance index was proposed on spatial domain to consider both potential and vibrational energy, so that the resulting shape of the distributed actuator was optimized for dynamic control of the structure. It is assumed that the structure satisfies the final rest condition using the realizable control scheme although the initial disturbance can affect the system response. Both equations on states and costates were derived based on the selected performance index and structural model. Ricatti matrix differential equations on state and costate variables were derived by the reconfiguration of the sub-matrices and application of time/space boundary conditions, and finally optimal actuator distribution was obtained. Numerical simulation results validated the proposed actuator shape optimization scheme.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Operational Characteristics of a Cam-type Vegetable Transplanter and Mechanism of a Transplanting Device (캠방식 채소 정식기의 작동 특성 및 식부장치 작동 메커니즘 분석)

  • Park, Jeong-Hyeon;Hwang, Seok-Joon;Nam, Ju-Seok
    • Journal of agriculture & life science
    • /
    • v.53 no.4
    • /
    • pp.113-124
    • /
    • 2019
  • In this study, the operational characteristics of a cam-type vegetable transplanter which usually used in domestic was analyzed and operating mechanism of a transplanting device was analyzed. The main components and power path of the transplanter were analyzed. The maximum and minimum control cycles according to the moving speed and the plant spacing were analyzed. 3D modeling and simulation were performed to derive the trajectory of the bottom end of the transplanting hopper and the plant spacing at the each operating condition. The simulation results were verified by the field tests. As main findings of this study, the transplanting device has one degree of freedom (DOF) which consist of 13 links, 17 rotating joints and 1 half joint, and each part has composite structure with cam and links. By continuous and repetitive motion of the structures of transplanting device, the transplanting hopper plants the seedling in the ground with a vertical direction, and the seedling was planted stably. The power is transmitted to the driving part and transplanting device from the engine, and the maximum and minimum plant spacing of the transplanting device were about 900 mm and 350 mm, respectively.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Internal Components Arrangement of MR Damper Landing Gear for Cavitation Prevention (캐비테이션 방지를 위한 MR 댐퍼형 착륙장치의 내부 형상 배치에 대한 연구)

  • Joe, Bang-Hyun;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.33-41
    • /
    • 2020
  • The landing gear of an aircraft is a device that absorbs and dissipates shock energy transmitted from the ground to the fuselage. Among the landing gears, the semi-active MR damper landing gear is supposed to show high-shock absorption efficiency under various landing conditions and secure the stability when out of control. In the case of the MR damper landing gear using an annular channel rather than orifice, Amesim, a commercial multi-physics program, is considered as more useful than the conventional two-degree-of-freedom model because the damping force generated by the pressure drop through the flow annular path can cause cavitation in the low-pressure chamber of the MR damper with a specific internal structure. In this paper, the main dynamic characteristics of the MR damper landing gear with an annular type flow path structure has been analyzed under the condition of cavitation. Based on the analysis results using Amesim, a design guideline for the MR damper flow path that prevents cavitation has been proposed based on the modification of the arrangement of internal components of the damper. The guideline was verified through a drop simulation.

Development of Examination Model of Weather Factors on Garlic Yield Using Big Data Analysis (빅데이터 분석을 활용한 마늘 생산에 미치는 날씨 요인에 관한 영향 조사 모형 개발)

  • Kim, Shinkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.480-488
    • /
    • 2018
  • The development of information and communication technology has been carried out actively in the field of agriculture to generate valuable information from large amounts of data and apply big data technology to utilize it. Crops and their varieties are determined by the influence of the natural environment such as temperature, precipitation, and sunshine hours. This paper derives the climatic factors affecting the production of crops using the garlic growth process and daily meteorological variables. A prediction model was also developed for the production of garlic per unit area. A big data analysis technique considering the growth stage of garlic was used. In the exploratory data analysis process, various agricultural production data, such as the production volume, wholesale market load, and growth data were provided from the National Statistical Office, the Rural Development Administration, and Korea Rural Economic Institute. Various meteorological data, such as AWS, ASOS, and special status data, were collected and utilized from the Korea Meteorological Agency. The correlation analysis process was designed by comparing the prediction power of the models and fitness of models derived from the variable selection, candidate model derivation, model diagnosis, and scenario prediction. Numerous weather factor variables were selected as descriptive variables by factor analysis to reduce the dimensions. Using this method, it was possible to effectively control the multicollinearity and low degree of freedom that can occur in regression analysis and improve the fitness and predictive power of regression analysis.