DOI QR코드

DOI QR Code

Design of FIR Halfband Filters using Generalized Lagrange Polynomial

일반화된 라그랑지 다항식을 사용하는 FIR 하프밴드 필터 설계

  • Bong, Jeongsik (Department of Information and Communication Engineering, Dongguk University) ;
  • Jeon, Joonhyeon (Department of Information and Communication Engineering, Dongguk University)
  • 봉정식 (동국대학교-서울캠퍼스 공과대학 정보통신공학전공) ;
  • 전준현 (동국대학교-서울캠퍼스 공과대학 정보통신공학전공)
  • Received : 2013.08.13
  • Published : 2013.10.25

Abstract

Maximally flat (MAXFLAT) half-band filters usually have wider transition band than other filters. This is due to the fact that the maximum possible number of zeros at $z={\pm}1$ is imposed, which leaves no degree of freedom, and thus no independent parameters for direct control of the frequency response. This paper describes a novel method for the design of FIR halfband filters with an explicit control of the transition-band width. The proposed method is based on a generalized Lagrange halfband polynomial (g-LHBP) with coefficients parametizing a 0-th coefficient $h_0$, and allows the frequency response of this filter type to be controllable by adjusting $h_0$. Then, $h_0$ is modeled as a steepness parameter of the transition band and this is accomplished through theoretically analyzing a polynomial recurrence relation of the g-LHBP. This method also provides explicit formulas for direct computation of design parameters related to choosing a desired filter characteristic (by trade-off between the transition-band sharpness and passband & stopband flatness). The examples are shown to provide a complete and accurate solution for the design of such filters with relatively sharper transition-band steepness than MAXFLAT half-band filters.

일반적으로 최대평탄 하프밴드 필터들은 다른 필터들에 비해 넓은 주파수 영역을 가지고 있다. 이것은 필터의 주파수 응답을 직접적으로 제어하기 위한 필터 차수의 여분이 없이 단지 $z={\pm}1$에서 최대 가능한 제로 수를 갖도록 설계된 것으로 독립된 파라미터가 없기 때문이다. 본 논문에서는 천이 대역폭 직접 제어가 가능한 FIR 하프밴드 필터들의 설계를 위한 새로운 방법을 제안하였다. 제안된 방법은 필터의 0번째 계수인 $h_0$를 파라미터화한 일반화된 라그랑지 하프밴드 다항식(g-LHBP)을 기반하고 있으며, $h_0$를 제어함으로써 요구되는 주파수 응답을 갖는 필터를 설계하는 방식이다. 이때 $h_0$는 g-LHBP 재귀관계의 이론적 분석을 통하여 천이대역의 경사도 파라미터로 모델링하였다. 또한, 이 방식은 요구된 필터 특성(:천이대역의 경사도와 대역 평탄도 사이의 균형) 선택과 관련된 설계 파라미터들(:필터 계수들)의 직접적인 계산을 위한 명확한 공식을 제공한다. 설계 예시들은 제안된 방식이 최대평탄 하프밴드 필터들 보다 상대적으로 날카로운 천이대역 경사도를 가진 하프밴드 필터의 설계에 적합한 솔루션임을 보여준다.

Keywords

References

  1. J. F. Kaiser, "Design subroutine (MXFLAT) for symmetric FIR low pass digital filters with maximally-flat pass and stop bands," in: Program for Digital Signal Processing, New York: IEEE Press, pp. 5.3-l-5.3-6, 1979.
  2. P. P. Vaidyanathan, "Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks," IEEE Trans. Circuits & Syst., CAS-32, pp. 236-244, 1985.
  3. P. P. Vaidyanathan, "Optimal design of linear phase FIR digital filters with very flat passbands and equiripple stopbands," IEEE Trans. Circuits & Syst., CAS-32, pp. 904-917, 1985.
  4. Joonhyeon Jeon, "A design method of linear phase FIR filters with MAXFLAT and MAXSHCUT frequency characteristics", Journal of The Institute of Electronics Engineers of Korea, vol. 44, no. 3, pp. 105-112, May 2007.
  5. O. Herrmann, "On the approximation problem in nonrecursive digital filter design," IEEE Trans. Circuit Theory, CT-18, pp. 411-413, 1971.
  6. J. A. Miller, "Maximally flat nonrecursive digital filters," Electron. Lett., vol. 8, pp. 157-158, 1972. https://doi.org/10.1049/el:19720115
  7. L. Rajagpoal and S. C. Dutta Roy, "Design of maximally-flat FIR filters using the Bernstein polynomial," IEEE Trans. Circuits & Syst., CAS-34, pp. 1587-1590, 1987.
  8. M. U. A. Bromba and H. Ziegler, "Explicit formula for filter function of maximally flat nonrecursive digital filters," Electron Lett., vol 16, pp. 905-906, 1980. https://doi.org/10.1049/el:19800644
  9. P. Thajchayapong, M. Puangpool and S. Banjongjit, "Maximally flat f.i.r filter with prescribed cutoff frequency," Electron. Lett., vol. 16, pp. 514-515, 1980. https://doi.org/10.1049/el:19800359
  10. B. C. Jinaga and S.C. Dutta Roy, "Coefficients of maximally flat low and high pass non-recursive digital filters with specified cut-off frequency," Signal Process., vol. 9, pp. 121-124, 1985. https://doi.org/10.1016/0165-1684(85)90034-9
  11. J. Jeon and D. Kim, "Design of nonrecursive FIR filters with simultaneously MAXFLAT magnitude and prescribed cutoff frequency," Digital Signal Process., vol. 22, pp. 1085-1094, 2012. https://doi.org/10.1016/j.dsp.2012.06.006
  12. S. C. Pei and P. H. Wang, "Closed-form design and efficient implementation of generalized maximally flat half-band FIR filters," IEEE Signal Process. Lett., vol. 7, pp. 149-151, 2000. https://doi.org/10.1109/97.844635
  13. M. M. J. Yekta, "Equivalence of the Lagrange interpolator for uniformly sampled signals and the scaled binomially windowed shifted sinc function," Digital Signal Process., vol. 19, pp. 838-842, 2009. https://doi.org/10.1016/j.dsp.2009.03.009
  14. R. Ansari, C. Guillemot and J.F. Kaiser, "Wavelet construction using Lagrange halfband filters," IEEE Trans. Circuits Syst., vol. 38 , pp. 1116-1118, 1991. https://doi.org/10.1109/31.83889
  15. G. Anbarjafari and H. Demirel, "Image Super Resolution Based on Interpolation of Wavelet Domain High Frequency Subbands and the Spatial Domain Input Image," ETRI Journal, vol. 32, pp. 390-394, 2010. https://doi.org/10.4218/etrij.10.0109.0303
  16. Joonhyeon Jeon, "Design of closed-form QMF filters with maximally flat and half-band characteristics in th frequency domain", Journal of The Institute of Electronics Engineers of Korea, vol. 44, no. 7, pp. 70-77, July 2007.
  17. I. R. Khan and R. Ohba, "Efficient design of halfband low/high pass FIR filters using explicit formulas for tap coefficients," IEICE Trans. Fundament., E83-A, pp. 2370-2373, 2000.
  18. I. R. Khan, "Flat magnitude response FIR halfband low/high pass digital filters with narrow transition bands," Digital Signal Process., vol. 20, pp. 328-336, 2010. https://doi.org/10.1016/j.dsp.2009.07.001