DOI QR코드

DOI QR Code

시간유한요소법을 이용한 분포형 구동기의 형상최적화에 관한 연구

A Study on Shape Optimization of Distributed Actuators using Time Domain Finite Element Method

  • 석진영 (충남대학교 항공우주공학과) ;
  • 김유단 (서울대학교 기계항공공학부)
  • 발행 : 2005.09.01

초록

시간유한요소법은 시간영역을 고정시키고 행렬 미분방정식 형태의 공간전파 관계식을 풂으로써 시간과 공간에 대한 동적 해석을 수행하는 방법이다. 이 방법은 공간이산화 유한요소법이나 시/공간 동시이산화 유한요소법에 비해 공간에 관한 자유도가 발생하는 것이 두드러진 특징으로, 이를 이용하여 분포형 구동기의 공간에 따른 특성을 최적화하는 데에 효율적으로 사용될 수 있다. 본 논문에서는 임의의 초기조건을 반영할 수 있도록 구성된 상태변수 벡터를 이용하여 구조물을 시간영역에서 이산화하고, 공간영역에서 전파관계식 및 경계조건을 이용하여 공간전파 관계식을 형성하였다. 이 때 구동기의 공간에 따른 형상 분포는 설계되어야 할 변수의 함수이고, 시간반응은 형상함수를 이용하여 이산화 하였다. 포텐셜 에너지 및 운동에너지를 구조물의 변위제어에 적절한 최적의 성능지수로 설정하고, 이를 최소화하도록 미지의 함수인 구동기의 분포형상을 구하였다. 일반적으로 구조물은 임의의 초기조건에서 외란을 받게 되나, 본 연구에서는 구현가능한 제어법칙을 이용하여 최종시간에서 안정화(rest) 조건을 만족한다고 가정하였다. 구동기 분포형상 최적화를 위해 상태/준상태 방정식을 유도하였다. 서브행렬 재형상화와 시/공간 경계조건을 통해 상태변수와 준상태변수에 대한 Ricatti 미분방정식을 유도하였다. 이를 통해 구동기 분포형상 최적화를 구현하였으며, 수치 시뮬레이션을 통해 적절한 구동기의 분포형상 최적화를 수행할 수 있음을 보였다.

A dynamic analysis method that freezes a time domain by discretization and solves the spatial propagation equation has a unique feature that provides a degree of freedom on spatial domain compared with the space discretization or space-time discretization finite element method. Using this feature, the time finite element analysis can be effectively applied to optimize the spatial characteristics of distributed type actuators. In this research, the time domain finite element method was used to discretize the model. A state variable vector was used in the discretization to include arbitrary initial conditions. A performance index was proposed on spatial domain to consider both potential and vibrational energy, so that the resulting shape of the distributed actuator was optimized for dynamic control of the structure. It is assumed that the structure satisfies the final rest condition using the realizable control scheme although the initial disturbance can affect the system response. Both equations on states and costates were derived based on the selected performance index and structural model. Ricatti matrix differential equations on state and costate variables were derived by the reconfiguration of the sub-matrices and application of time/space boundary conditions, and finally optimal actuator distribution was obtained. Numerical simulation results validated the proposed actuator shape optimization scheme.

키워드

참고문헌

  1. L. R. Ray, and L. Tian, 'Damage Detection in Smart Structures, Through Sensitivity Enhancing Feedback Control', Journal of Sound and Vibration, Vol. 227, No.5, 1999, pp. 987-1002 https://doi.org/10.1006/jsvi.1999.2392
  2. S. Narayanan, and V. Balamurugan, 'Finite Element Modeling of Piezolaminated Smart Structures for Active Vibration Control with Distributed Sensors and Actuators', Journal of Sound and Vibration, Vol. 262, No.3, 2003, pp. 529-562 https://doi.org/10.1016/S0022-460X(03)00110-X
  3. 방형준, 김대현, 홍창선, 김천곤, '스마트 구조물의 동시다점 진동 취득용 안정화된 광섬유 브래그 격자 센서 시스템의 개발', 한국항공우주학회지, 제31권, 제1호, 2004, pp. 50-57
  4. D. K. Anthony, 'Robustness of Optimal Design Solutions to Reduce Vibration Transmission in a Lightweight 2-D Structure', Journal of Sound and Vibration, Vol. 245, No.3, 2001, pp. 417-431 https://doi.org/10.1006/jsvi.2001.3589
  5. S. Devasia, T. Meressi, B. Paden, and E. Bayo, 'Piezoeletric Actuator Design for Vibration Suppression: Placement and Sizing', Journal of Guidance, Control, and Dynamics, Vol. 16, No.5, 1993, pp. 859-864 https://doi.org/10.2514/3.21093
  6. J. Kim, J.K. Ryou, and S. J. Kim, 'Optimal Gain Distribution for Two-Dimensional Modal Transducer and Its Implementation Usng Multi-Layered PVDF Films', Journal of Sound and Vibration, Vol. 251, No.3, 2002, pp. 395-408 https://doi.org/10.1006/jsvi.2001.4001
  7. Y.J. Yan, and L.H. Yam, 'A Synthetic Analysis on Design of Optimum Control For An Optimized Intelligent Structure', Journal of Sound and Vibration, Vol. 249, No.4, 2002, pp. 775-784 https://doi.org/10.1006/jsvi.2001.3859
  8. Y. Kim, D. Kum, and C. Nam, ' Simultaneous Structural/Control Optimum Design of Composite Plate with Piezoelectric Actuators', Journal of Guidance, Control, and Dynamics, Vol.20, No.6, 1997, pp. 1111-1117 https://doi.org/10.2514/2.4193
  9. C.N. Viswanathan, R.W. Longman, and P.W. Likins, 'A Degree of Controllability Definition: Fundamental Concepts and Application to Modal Systems', Journal of Guidance, Cotrol, and Dynamics, Vol. 7, No.2, 1984, pp. 222-230 https://doi.org/10.2514/3.8570
  10. A. Arbel, 'Controllability Measures and Actuator Placement in Oscillatory Systems', International Journal of Control, Vol. 33, No.3, 1981, pp. 565-574 https://doi.org/10.1080/00207178108922941
  11. I. Bruant, G. Coffignal, and F. Lene, 'A Methodology for Determination of Piezoelectric Actuator and Sensor Location on Beam Structures', Journal of Sound and Vibration, Vol. 243, No.5, 2001, pp. 861-882 https://doi.org/10.1006/jsvi.2000.3448
  12. K. Jiramoto, H. Doki, and G. Obinata, 'Optimal Sensor/Actuator Placement for Active Vibration Control Using Explicit Solution of Algebraic Riccati Equation', Journal of Sound and Vibration, Vol. 229, No.5, 1999, pp. 1057-1075 https://doi.org/10.1006/jsvi.1999.2530
  13. W. Gawronski, 'Simultaneous Placement of Actuators and Sensors', Journal of Sound and Vibration, Vol. 228, No.4, 1999, pp. 915-922 https://doi.org/10.1006/jsvi.1999.2466
  14. S.M. Yang, 'Stability Analysis of Linear Structural Control Systems with Noncolocated Feedback', Computers and Structures, Vol. 62, No.4, 1997, pp. 685-690 https://doi.org/10.1016/S0045-7949(96)00265-9
  15. K. Choe, and H. Baruh, 'Actuator Placement in Structural Control', Journal of Guidance, Control, and Dynamics, Vol. 15, No.1, 1992, pp. 40-48 https://doi.org/10.2514/3.20799
  16. M.L. DeLorenzo, 'Sensor and Actuator Selection for Large Space Structure Control', Journal of Guidance, Control, and Dynamics, Vol. 13, No.2, 1990, pp. 249-257 https://doi.org/10.2514/3.20544
  17. J. Suk, and Y. Kim, 'Time Domain Finite Element Analysis of Dynamic Systems', AIAA Journal, Vol. 36, No.7, 1998, pp. 1312-1319 https://doi.org/10.2514/2.516