DOI QR코드

DOI QR Code

Dynamics modeling and performance analysis for the underwater glider

수중 글라이더의 운동특성을 고려한 동역학 모델링 및 운동성능 해석

  • Nam, Keon-Seok (Department of Materials Engineering, Korea Maritime and Ocean University) ;
  • Bae, Jae-Hyeon (Department of Mechanical Engineering, Korea Maritime and Ocean University) ;
  • Jeong, Sang-Ki (Maritime Security Research Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Shin-Je (Maritime Security Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Joon-Young (Division of Mechanical Engineering, Korea Maritime and Ocean University)
  • Received : 2015.07.17
  • Accepted : 2015.09.16
  • Published : 2015.09.30

Abstract

Underwater gliders do not typically have separate propellers for forward motion. They generate propulsive forces based on the difference between their buoyancy and gravity. They can control the volume from the buoyancy engine to adjust the propulsive force. In addition, the attitude of the underwater glider is controlled by a rubberless motion controller. The motion controller can change the mass center and moment of inertia of the inner moving mass. Owing to the change in these parameters, the attitude of the underwater glider is changed. In this study, we derive nonlinear, six degree of freedom (DOF) mathematical models for the motion controller and buoyancy engine. Using these equations, we perform dynamic simulations of the proposed underwater glider, and verify the suitability of the design and dynamic performances of the proposed underwater glider. We then perform the motion control simulation for the pitch and roll angle, and analyze the dynamic performance according to the pitch and roll angles.

일반적인 무인잠수정과는 달리 수중 글라이더는 별도의 추진체를 가지지 않고 부력과 중력의 차이에 의해서 추진력을 얻게 된다. 추진력을 얻기 위해 부력을 조절하게 되며, 부력의 변화는 부력엔진을 이용하며 수중 글라이더의 체적을 변화시킨다. 또한, 수중 글라이더의 자세를 제어하기 위해 별도의 방향타를 사용하지 않고 내부의 자세제어기를 이용하여 내부 이동질량의 위치변화를 이용한다. 내부 이동질량의 위치변화에 의한 질량중심과 질량관성모멘트의 변화가 발생하게 되며 이로 인해 수중 글라이더의 자세가 변화하게 된다. 본 논문에서는 수중 글라이더의 기구학적 특성과 운동특성을 반영한 비선형 6자유도 운동방정식을 유도하고 이를 이용한 운동 시뮬레이션을 수행하였다. 자세제어기를 이용하여 수중 글라이더의 종동요각과 횡동요각 제어 운동 시뮬레이션을 수행하였으며, 종동요각과 횡동요각 제어에 따른 수중 글라이더의 운동특성을 해석하였다.

Keywords

References

  1. D. C. Webb, P. J. Simonetti, and C. P. Jones, "SLOCUM, an underwater glider propelled by environmental energy," IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 437-446, 2001. https://doi.org/10.1109/48.972076
  2. C. C. Eriksen, T. J. Osse, R. D. Light, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. chiodi, "Seaglider; A long-range autonomous underwater vehicle for Oceanographic research," IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 424-436, 2004.
  3. D. L. Rudnick, R. E. Davis, C. C. Eriksen, D. M. Fratantoni, and M. J. Perry, "Underwater gliders for ocean research," Marine Technology Society Journal, vol. 38, no. 2, pp. 73-84, 2004. https://doi.org/10.4031/002533204787522703
  4. J. Sherman, R. Davis, W. B. Owens, and J. Valdes, "The autonomous underwater glider Spray," IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp 437-466, 2001. https://doi.org/10.1109/48.972076
  5. D. F. Myring, "A theoretical study of body drag in subcritical axisymmetric flow," Aeronautical Quarterly, pp. 186-194, 1976.
  6. T. L. Fossen, Guidance and Control of Ocean Vehicles, NY, USA: John Wiley & Sons Inc, 1994.
  7. J. G. Graver, Underwater Gliders; Dynamics, Control and Design, Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, Princeton University, USA, 2005.
  8. J. W. Jung, J. H. Jeong, I. G. Kim, and S. K. Lee, "Experimental study on hydrodynamic coefficients of autonomous underwater glider using vertical planar motion mechanism test," Journal of Ocean Engineering and Technology, vol. 28, no. 2, pp. 119-125, 2014 https://doi.org/10.5574/KSOE.2014.28.2.119
  9. T. J. Prestero, Verification of a Six-Degree of Freedom Simulation Model for the REMUS Autonomous Underwater Vehicle, M.S Thesis, Department of Ocean Engineering, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution, USA, 2001.

Cited by

  1. 가오리형 수중글라이더의 형상설계 및 운동성능 해석 vol.12, pp.5, 2015, https://doi.org/10.14372/iemek.2017.12.5.343
  2. Ray형 수중글라이더 소형 축소모델 개발 및 성능시험 vol.21, pp.6, 2017, https://doi.org/10.12673/jant.2017.21.6.537