• Title/Summary/Keyword: degradation pathway

Search Result 435, Processing Time 0.025 seconds

The mechanism of apoptosis induced by eugenol in human osteosarcoma cells

  • Shin, Sang-Hun;Park, Jae-Hyun;Kim, Gyoo-Cheon;Park, Bong-Soo;Gil, Young-Gi;Kim, Chul-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.20-27
    • /
    • 2007
  • Eugenol is commonly used in dentistry for the sedation of toothache, pulpitis, and dental hyperalgesia. This study was performed to investigate the apoptotic effect of eugenol to human osteosarcoma (HOS) cells and the potential use of this compound in osteosarcoma cells. Eugenol showed the apoptotic effect in HOS cells in dose- and time-dependent manner. Fragmentation and condensation of DNA were showed by TUNEL assay, Hemacolor stain and Hoechst stain. In the DNA electrophoresis analysis, cells showed DNA degradation characteristic of apoptosis with a ladder pattern of DNA fragments. Apoptosis-related factors were analyzed by western blotting. Cells treated with eugenol showed caspase-3, PARP, lamin A and DFF-45 cleavage. Eugenol treatment induced caspase-3 cleavage and activation. Cleavages of PARP, DFF-45 and lamin A were accompanied with activation of caspase triggered by eugenol in HOS cells. Though this study needs more investigations, these results suggest that eugenol induce apoptosis via caspase dependent pathway in HOS cells and eugenol may constitute a potential antitumor compound against osteosarcoma cells.

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation

  • Park, Young-Hoon;Jeong, Suk;Ha, Ki-Tae;Yu, Hak Sun;Jang, Se Bok
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.269-274
    • /
    • 2017
  • The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptor-mediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction.

Vitamin C Blocks TNF-${\alpha}$-induced NF-kB Activation and ICAM-1 Expression in Human Neuroblastoma Cells

  • Son, Eun-Wha;Mo, Sung-Ji;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Archives of Pharmacal Research
    • /
    • v.27 no.10
    • /
    • pp.1073-1079
    • /
    • 2004
  • Interactions of the cell adhesion molecules are known to play important roles in mediating inflammation. The proinflammatory cytokine, tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), activates the NF-kB signaling pathway, which induces the expression of various genes, such as intercellular adhesion molecule-1 (ICAM-1). In this study, the effect of vitamin C on the ICAM-1 expression induced by TNF-${\alpha}$ in a human neuroblastoma cell line, SK-N-SH was investigated. Treatment with vitamin C resulted in the downregulation of the TNF-${\alpha}$-induced surface expression and ICAM-1 mRNA levels in a concentration-dependent manner. Moreover, a gel shift analysis indicated that vitamin C dose-dependently inhibited the NF-kB activation and IkB${\alpha}$ degradation induced by TNF-${\alpha}$. Taken together, these results suggest that vitamin C downregulates TNF-${\alpha}$- induced ICAM-1 expression via the inhibition of NF-kB activation.

Anti-Inflammatory Effect of the Extracts from Abeliophyllum distichum Nakai in LPS-Stimulated RAW264.7 Cells

  • Park, Gwang Hun;Park, Jae Ho;Eo, Hyun Ji;Song, Hun Min;Lee, Man Hyo;Lee, Jeong Rak;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.209-214
    • /
    • 2014
  • In this study, we investigated whether A. distichum decreases the production of inflammatory mediators through downregulation of the NF-${\kappa}B$ and ERK pathway. Our data indicated that A. distichum leaf inhibits the overexpression of iNOS in protein and mRNA levels, and subsequently blocked LPS-mediated NO overproduction in RAW264.7 cells. A. distichum leaf inhibited $I{\kappa}B-{\alpha}$ degradation and p65 nuclear translocation, and subsequently suppressed transcriptional activity of NF-${\kappa}B$ in LPS-stimulated RAW264.7 cells. In addition, A. distichum leaf suppressed LPS-induced ERK1/2 activation by decreasing phosphorylation of ERK1/2. These findings suggest that A. distichum leaf shows anti-inflammatory activities through suppressing ERK-mediated NF-${\kappa}B$ activation in mouse macrophage.

Characterization of Lactobacilli with Tannase Activity Isolated from Kimchi

  • Kwon, Tae-Yeon;Shim, Sang-Min;Lee, Jong-Hoon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1322-1326
    • /
    • 2008
  • Tannase catalyzes the hydrolysis of gallic acid esters and hydrolysable tannins. Twenty-two Lactobacillus strains with tannase activity were isolated from 7 types of kimchi. A polymerase chain reaction-based assay targeting the recA gene assigned all isolates to either Lactobacillus plantarum or Lactobacillus pentosus. The tannase activities of isolates measured in whole cells and cell-free extracts varied even within each species. The activities of the isolates varied with the assay method, but both methods indicated that isolate LT7 (identified as L. pentosus) showed the highest activity. The results of thin layer chromatography and high performance liquid chromatography, respectively, showed that tannic acid and gallic acid degraded to pyrogallol in resting L. pentosus LT7 cells. Therefore, the putative biochemical pathway for the degradation of tannic acid by L. pentosus implies that tannic acid is hydrolyzed to gallic acid and glucose, with the formed gallic acid being decarboxylated to pyrogallol. This study revealed the possible production of pyrogallol from tannic acid by the resting cell reaction with L. pentosus LT7.

p62, a Phosphotyrosine Independent Ligand of SH2 Domain of $p56^{Ick}$, is Cleaved by Caspase-3 during Apoptosis in Jurkat Cells

  • Joung, Insil
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.145-151
    • /
    • 2001
  • p62 is a phosphotyrosine-independent ligand of the SH2 domain of $p56^{Ick}$, a T-cell specific Src family tyrosine kinase. Recently p62 has been shown to interact with a number of proteins, such as $PKC\varsigma$ and ubiquitin, and implicated in important cellular functions such as cell proliferation. Since the two p62 interacting proteins, $p56^{Ick}$ and $PKC\varsigma$, have been reported to play roles in cell death, 1 have addressed the potential role of p62 during apoptosis in Jurkat cells in this study. Herein 1 show that p62 was specifically cleaved into two peptides by a caspase-3-like activity during Fas-receptor mediated apoptosis in Jurkat cells. This cleavage generated two fragments with molecular weights of about 35 kDa that differed in subcellular localizations. The N-terminal cleaved fragment was present in the detergent-insoluble fraction whereas the C-terminal fragment was found in the detergent-soluble fraction. In addition, the C-terminal fragment appeared to be subjected to further degradation as apoptosis prolonged. Moreover, overexpression of p62 in Jurkat cells attenuated the Fas receptor mediated apoptosis, suggesting that p62 is involved in apoptotic signal transduction pathway in lymphocytes.

  • PDF

Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis

  • Kim, Hyun Jeong;Park, Jin Woo;Kang, Joo-Young;Seo, Sang-Beom
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.444-457
    • /
    • 2021
  • Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.

N-terminal formylmethionine as a novel initiator and N-degron of eukaryotic proteins

  • Kim, Jeong-Mok
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.163-164
    • /
    • 2019
  • The ribosomal synthesis of proteins in the eukaryotic cytosol has always been thought to start from the unformylated N-terminal (Nt) methionine (Met). In contrast, in virtually all nascent proteins in bacteria and eukaryotic organelles, such as mitochondria and chloroplasts, Nt-formyl-methionine (fMet) is the first building block of ribosomal synthesis. Through extensive approaches, including mass spectrometric analyses of the N-termini of proteins and molecular genetic techniques with an affinity-purified antibody for Nt-formylation, we investigated whether Nt-formylated proteins could also be produced and have their own metabolic fate in the cytosol of a eukaryote, such as yeast Saccharomyces cerevisiae. We discovered that Nt-formylated proteins could be generated in the cytosol by yeast mitochondrial formyltransferase (Fmt1). These Nt-formylated proteins were massively upregulated in the stationary phase or upon starvation for specific amino acids and were crucial for the adaptation to specific stresses. The stress-activated kinase Gcn2 was strictly required for the upregulation of Nt-formylated proteins by regulating the activity of Fmt1 and its retention in the cytosol. We also found that the Nt-fMet residues of Nt-formylated proteins could be distinct N-terminal degradation signals, termed fMet/N-degrons, and that Psh1 E3 ubiquitin ligase mediated the selective destruction of Nt-formylated proteins as the recognition component of a novel eukaryotic fMet/N-end rule pathway, termed fMet/N-recognin.

Lattice Oxygen Activation in NiFe (Oxy)hydroxide using Se (셀레늄을 활용한 니켈철 (옥시)수산화물의 격자 산소 활성화)

  • Jo, Seunghwan;Sohn, Jung Inn
    • Korean Journal of Materials Research
    • /
    • v.32 no.8
    • /
    • pp.339-344
    • /
    • 2022
  • The lattice oxygen mechanism (LOM) is considered one of the promising approaches to overcome the sluggish oxygen evolution reaction (OER), bypassing -OOH* coordination with a high energetic barrier. Activated lattice oxygen can participate in the OER as a reactant and enables O*-O* coupling for direct O2 formation. However, such reaction kinetics inevitably include the generation of oxygen vacancies, which leads to structural degradation, and eventually shortens the lifetime of catalysts. Here, we demonstrate that Se incorporation significantly enhances OER performance and the stability of NiFe (oxy)hydroxide (NiFe) which follows the LOM pathway. In Se introduced NiFe (NiFeSe), Se forms not only metal-Se bonding but also Se-oxygen bonding by replacing oxygen sites and metal sites, respectively. As a result, transition metals show reduced valence states while oxygen shows less reduced valence states (O-/O22-) which is a clear evidence of lattice oxygen activation. By virtue of its electronic structure modulation, NiFeSe shows enhanced OER activity and long-term stability with robust active lattice oxygen compared to NiFe.

Nypa fruticans Wurmb Exerts Anti-Inflammatory Effects through NF-kB and MAPK Signaling Pathway

  • Hye-Jeong Park;So-Yeon Han;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.56-56
    • /
    • 2021
  • Nypa fruticans Wurmb is a mangrove plant belonging to Araceae family. N. fruticans is typically found in Southeast Asia, and in some parts of Queensland, Australia. N. fruticans has phytochemicals, phenolics, and flavonoids. In this study, we investigated the anti-inflammatory effects of the ethyl acetate fraction of N. fruticans (ENF) on the production and expression of cytokines and inflammatory mediators through the major signal transduction pathways. ENF attenuated the level of cytokines in a dose-dependent manner and decreased the production of nitric oxide (NO). ENF decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via alleviating transcription of nuclear factor-kappa B (NF-κB) by an inhibitor of nuclear factor-kappa B (IκB) degradation. Furthermore, mitogen-activated protein kinase (MAPK) signaling pathways (ERK1/2, JNK1/2, and p38) are known to be involved in the inflammatory response. Phosphorylations of ERK1/2, JNK1/2, and p38 were significantly decreased compared with the ENF-untreated control. Conclusively, ENF was related to alleviating various pro-inflammatory mediators through IκB/NF-κB and MAPK signaling pathways, including p65 translocation to the nucleus.

  • PDF