Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.8.339

Lattice Oxygen Activation in NiFe (Oxy)hydroxide using Se  

Jo, Seunghwan (Division of Physics and Semiconductor Science, Dongguk University)
Sohn, Jung Inn (Division of Physics and Semiconductor Science, Dongguk University)
Publication Information
Korean Journal of Materials Research / v.32, no.8, 2022 , pp. 339-344 More about this Journal
Abstract
The lattice oxygen mechanism (LOM) is considered one of the promising approaches to overcome the sluggish oxygen evolution reaction (OER), bypassing -OOH* coordination with a high energetic barrier. Activated lattice oxygen can participate in the OER as a reactant and enables O*-O* coupling for direct O2 formation. However, such reaction kinetics inevitably include the generation of oxygen vacancies, which leads to structural degradation, and eventually shortens the lifetime of catalysts. Here, we demonstrate that Se incorporation significantly enhances OER performance and the stability of NiFe (oxy)hydroxide (NiFe) which follows the LOM pathway. In Se introduced NiFe (NiFeSe), Se forms not only metal-Se bonding but also Se-oxygen bonding by replacing oxygen sites and metal sites, respectively. As a result, transition metals show reduced valence states while oxygen shows less reduced valence states (O-/O22-) which is a clear evidence of lattice oxygen activation. By virtue of its electronic structure modulation, NiFeSe shows enhanced OER activity and long-term stability with robust active lattice oxygen compared to NiFe.
Keywords
electrocatalysts; lattice oxygen mechanism; oxygen evolution reaction; chalcogen; transition metal (oxy)hydroxide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Xie, L. Du, L. Yan, S. Park, Y. Qiu, J. Sokolowski, W. Wang and Y. Shao, Adv. Funct. Mater., 32, 2110036 (2022).
2 X. Wang, G. Pawar, Y. Li, X. Ren, M. Zhang, B. Lu, A. Banerjee, E. J. Dufek, J.-G. Zhang, J. Xiao, J. Liu, Y. S. Meng, B. Liaw, Nat. Mater., 19, 1339 (2020).
3 K. Chang, D. T. Tran, J. Wang, N. H. Kim and J. H. Lee, J. Mater. Chem. A, 10, 3102 (2022).
4 Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu and X. Wang, Nat. Energy, 4, 329 (2019).
5 C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013).
6 B. Zhang, L. Wang, Z. Cao, S. M. Kozlov, F. P. G. Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Vonznyy, R. Comin, P. D. Luna, T. Regier, W. Bi, E. E. Alp, C. -W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo, H. Peng and E. H. Sargent, Nat. Catal., 3, 985 (2020).
7 A. Grimaud, O. D. Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper and Y. S. Horn, Nat. Chem., 9, 457 (2017).
8 Y. Luo, Z. Zhang, M. Chhowalla and B. Liu, Adv. Mater., 34, 2108133 (2022).
9 I. C. Man, H.-Y. Su, F. C. Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov and J. Rossmeisl, ChemCatChem, 3, 1159 (2011).
10 M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. S. Horn and H. Schafer, Chem. Soc. Rev., 51, 4583 (2022).
11 M. T. M. Koper, Chem. Sci., 4, 2710 (2013).
12 Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J. P. M. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, H. Wang, W. Zhou and Z. Shao, Nat. Commun., 11, 2002 (2020).
13 S. Jo, K. B. Lee and J. I. Sohn, ACS Sustain. Chem. Eng., 9, 14911 (2021).
14 M. Asnavandi, Y. Yin, Y. Li, C. Sun and C. Zhao, ACS Energy Lett., 3, 1515 (2018).
15 S. Abramovich, D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. W. Boukhvalov, A. Agarwal, E, Curcio, M. B. Sadan and A. Politano, Small, 18, 2201473 (2022).