DOI QR코드

DOI QR Code

Lattice Oxygen Activation in NiFe (Oxy)hydroxide using Se

셀레늄을 활용한 니켈철 (옥시)수산화물의 격자 산소 활성화

  • Jo, Seunghwan (Division of Physics and Semiconductor Science, Dongguk University) ;
  • Sohn, Jung Inn (Division of Physics and Semiconductor Science, Dongguk University)
  • 조승환 (동국대학교 물리반도체과학부) ;
  • 손정인 (동국대학교 물리반도체과학부)
  • Received : 2022.08.10
  • Accepted : 2022.08.22
  • Published : 2022.08.27

Abstract

The lattice oxygen mechanism (LOM) is considered one of the promising approaches to overcome the sluggish oxygen evolution reaction (OER), bypassing -OOH* coordination with a high energetic barrier. Activated lattice oxygen can participate in the OER as a reactant and enables O*-O* coupling for direct O2 formation. However, such reaction kinetics inevitably include the generation of oxygen vacancies, which leads to structural degradation, and eventually shortens the lifetime of catalysts. Here, we demonstrate that Se incorporation significantly enhances OER performance and the stability of NiFe (oxy)hydroxide (NiFe) which follows the LOM pathway. In Se introduced NiFe (NiFeSe), Se forms not only metal-Se bonding but also Se-oxygen bonding by replacing oxygen sites and metal sites, respectively. As a result, transition metals show reduced valence states while oxygen shows less reduced valence states (O-/O22-) which is a clear evidence of lattice oxygen activation. By virtue of its electronic structure modulation, NiFeSe shows enhanced OER activity and long-term stability with robust active lattice oxygen compared to NiFe.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2019R1A2C1007883).

References

  1. Y. Luo, Z. Zhang, M. Chhowalla and B. Liu, Adv. Mater., 34, 2108133 (2022).
  2. M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. S. Horn and H. Schafer, Chem. Soc. Rev., 51, 4583 (2022).
  3. X. Xie, L. Du, L. Yan, S. Park, Y. Qiu, J. Sokolowski, W. Wang and Y. Shao, Adv. Funct. Mater., 32, 2110036 (2022).
  4. I. C. Man, H.-Y. Su, F. C. Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov and J. Rossmeisl, ChemCatChem, 3, 1159 (2011).
  5. M. T. M. Koper, Chem. Sci., 4, 2710 (2013).
  6. A. Grimaud, O. D. Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. M. Koper and Y. S. Horn, Nat. Chem., 9, 457 (2017).
  7. Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J. P. M. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, H. Wang, W. Zhou and Z. Shao, Nat. Commun., 11, 2002 (2020).
  8. S. Jo, K. B. Lee and J. I. Sohn, ACS Sustain. Chem. Eng., 9, 14911 (2021).
  9. X. Wang, G. Pawar, Y. Li, X. Ren, M. Zhang, B. Lu, A. Banerjee, E. J. Dufek, J.-G. Zhang, J. Xiao, J. Liu, Y. S. Meng, B. Liaw, Nat. Mater., 19, 1339 (2020).
  10. M. Asnavandi, Y. Yin, Y. Li, C. Sun and C. Zhao, ACS Energy Lett., 3, 1515 (2018).
  11. S. Abramovich, D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. W. Boukhvalov, A. Agarwal, E, Curcio, M. B. Sadan and A. Politano, Small, 18, 2201473 (2022).
  12. K. Chang, D. T. Tran, J. Wang, N. H. Kim and J. H. Lee, J. Mater. Chem. A, 10, 3102 (2022).
  13. Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu and X. Wang, Nat. Energy, 4, 329 (2019).
  14. C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013).
  15. B. Zhang, L. Wang, Z. Cao, S. M. Kozlov, F. P. G. Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Vonznyy, R. Comin, P. D. Luna, T. Regier, W. Bi, E. E. Alp, C. -W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo, H. Peng and E. H. Sargent, Nat. Catal., 3, 985 (2020).