The mechanism of apoptosis induced by eugenol in human osteosarcoma cells

  • Shin, Sang-Hun (Department of Oral and Maxillofacial Surgery, Pusan National University) ;
  • Park, Jae-Hyun (Department of Oral Anatomy, College of Dentistry, Pusan National University) ;
  • Kim, Gyoo-Cheon (Department of Oral Anatomy, College of Dentistry, Pusan National University) ;
  • Park, Bong-Soo (Department of Oral Anatomy, College of Dentistry, Pusan National University) ;
  • Gil, Young-Gi (Department of Anatomy, College of Medicine, Kosin University) ;
  • Kim, Chul-Hoon (Department of Oral and Maxillofacial Surgery, College of Medicine, Dong-A Medical Center)
  • Published : 2007.02.28

Abstract

Eugenol is commonly used in dentistry for the sedation of toothache, pulpitis, and dental hyperalgesia. This study was performed to investigate the apoptotic effect of eugenol to human osteosarcoma (HOS) cells and the potential use of this compound in osteosarcoma cells. Eugenol showed the apoptotic effect in HOS cells in dose- and time-dependent manner. Fragmentation and condensation of DNA were showed by TUNEL assay, Hemacolor stain and Hoechst stain. In the DNA electrophoresis analysis, cells showed DNA degradation characteristic of apoptosis with a ladder pattern of DNA fragments. Apoptosis-related factors were analyzed by western blotting. Cells treated with eugenol showed caspase-3, PARP, lamin A and DFF-45 cleavage. Eugenol treatment induced caspase-3 cleavage and activation. Cleavages of PARP, DFF-45 and lamin A were accompanied with activation of caspase triggered by eugenol in HOS cells. Though this study needs more investigations, these results suggest that eugenol induce apoptosis via caspase dependent pathway in HOS cells and eugenol may constitute a potential antitumor compound against osteosarcoma cells.

Keywords

References

  1. Sneddon IB, Glew RC Practitioner: Contact dermatitis due to propanidid in an anaesthetist. Sep 1973;211(263):321-323
  2. Meyn RE, Stephens LC, Hunter NR, Milas L: Apoptosis in murine tumors treated with chemotherapy agents. Acticancer Drugs 1995;6:443-450 https://doi.org/10.1097/00001813-199506000-00013
  3. Barry MA, Behnke CA, Eastman A: Activation of progreammed cell death (apoptosis) by cisplastin, other anticancer drugs, toxins and hyperthermia. Biochem. Pharmacal. 1990;40:2353-2362 https://doi.org/10.1016/0006-2952(90)90733-2
  4. Nagata S: Apoptosis by death factor. Cell 1997;88:355-365 https://doi.org/10.1016/S0092-8674(00)81874-7
  5. Vaux LD, Streasser A: The molecular biology of apoptosis. Proc Natl Acad Sci USA 1996;93:2239-2244
  6. Kerr JFR, Wyllie AH, Currie AR: Apoptosis : a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972;26:239-257 https://doi.org/10.1038/bjc.1972.33
  7. Wyllie AH, Kerr JFR, Currie AR: Cell death : the significance of apoptosis. Int Rev Cytol 1980;68:251-306 https://doi.org/10.1016/S0074-7696(08)62312-8
  8. Tang D, Kidd VJ: Cleavage of DFF-45/ICAD by multiple caspases is essential for its function during apoptosis. J Biol Chem. Oct 1998;30;273(44):28549-28552 https://doi.org/10.1074/jbc.273.44.28549
  9. Brinkmann U, Brinkmann E, Gallo M, Scherf U, Pastan I: Role of CAS, a human homologue to the yeast chromosome segregation gene CSE1, in toxin and tumor necrosis factor mediated apoptosis. Biochemistry 1996;35:6891-6899 https://doi.org/10.1021/bi952829+
  10. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ: Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 1991;67:879-888 https://doi.org/10.1016/0092-8674(91)90361-2
  11. Casciola-Rosen L, Nicholson DW, Chong T, Rowan KR, Thornberry NA, Miller DK, Rosen A: Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J Exp Med May 1996;1;183(5):1957-1964 https://doi.org/10.1084/jem.183.5.1957
  12. Durkacz BW, Omidiji O, Gray DA, Shall S: (ADP-ribose)n participates in DNA excision repair. Nature 1980;283:593-596 https://doi.org/10.1038/283593a0
  13. Ikejima M, Noguchi S, Yamashita R, OguraT, Sugimura T, Gill DM, Miwa M: The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA. J Biol Chem 1990;265:21907-21913
  14. Noda M, Tsai SC, Adamik R, Moss J, Vaughan M: Mechanism of cholera toxin activation by a guanine nucleotide-dependent 19 kDa protein. Biochim Biophys Acta 1990;1034:195-199 https://doi.org/10.1016/0304-4165(90)90076-9
  15. Lautier D, Lagueux J, Thibodeau J, Menard L, Poirier GG: Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol Cell Biochem 1993;122:171-193 https://doi.org/10.1007/BF01076101
  16. Lindahl T, Satoh MS, Poirier GG, Klungland A: Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci. 1995;20:405-411 https://doi.org/10.1016/S0968-0004(00)89089-1
  17. D'Amours D, Desnoyers S, D'Silva I, Poirier GG: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342:249-268 https://doi.org/10.1042/0264-6021:3420249
  18. Jones DP, McConkey DJ, Nicotera P, Orrenius S: Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem 1989;264:6398-6403
  19. Aebi U, Cohn J, Buhle L, Gerace L: The nuclear lamina is a meshwork of intermediate-type filaments. Nature. Oct 1986;9-15;323(6088):560-564
  20. McKeon FD, Kirschner MW, Caput D: Homologies in both primary and secondary structure between nuclear envelope and intermediatefilament proteins. Nature. Feb 1986;6-12;319(6053):463-468 https://doi.org/10.1038/319463a0
  21. Fisher DZ, Chaudhary N, Blobel G: cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A. Sep 1986;83(17):6450-6454
  22. Yabuki M, Miyake T, Doi Y, Fujiwara T, Hamazaki K, Yoshioka T, Horton AA, Utsumi K: Role of nuclear lamins in nuclear segmentation of human neutrophils. Physiol Chem Phys Med NMR 1999;31(2):77-84
  23. Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC: Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA. Sep 1995;26;92(20):9042-9046
  24. Lin F, Worman HJ: Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J Biol Chem. Aug 1993;5;268(22):16321-16326
  25. Hsu HL, Yeh NH: Dynamic changes of NuMA during the cell cycle and possible appearance of a truncated form of NuMA during apoptosis. J Cell Sci Feb 1996;109(Pt 2):277-288
  26. Oberhammer FA, Hochegger K, Froschl G, Tiefenbacher R, Pavelka M: Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J Cell Biol Aug 1994;126(4):827-837 https://doi.org/10.1083/jcb.126.4.827
  27. Widlak P, Lanuszewska J, Cary RB, Garrard WT: Subunit structures and stoichiometries of human DNA fragmentation factor proteins before and after induction of apoptosis. J Biol Chem. Jul 2003;18;278(29):26915-26922 https://doi.org/10.1074/jbc.M303807200
  28. Hong WK, Sporn MB: Recent advances in chemoprevention of cancer. Science 1997;278:1073-1077 https://doi.org/10.1126/science.278.5340.1073
  29. Tompson DC, Constantin-Teodosius D, Moldeus P: Metabolism and cytotoxicity of eugenol in isolated rat hopatocytes. Chem Biol Interact 1991;77:137-147 https://doi.org/10.1016/0009-2797(91)90069-J
  30. Dewhirst FE: Structure-activity relationships for inhibition of prostaglandin cyclooxygenase by phenolic compounds. Prostaglandins 1980;20:209-222 https://doi.org/10.1016/S0090-6980(80)80040-2
  31. Hume WR: Effect of eugenol on respiration and division in human pulpmouse fibroblasts, and liver cells in vitro. J Den Res 1984;63:1262-1265 https://doi.org/10.1177/00220345840630110101
  32. Lindqvist L, Otteskog P: Eugenol: liberation from dental materials and effect on human diloid fibroblast cells. Scand J Dent 1984;89:552-556
  33. Hume WR: In vitro studies on the local pharnacidynamics, pharmacology and toxicology of eugenol and oxideeugenol. Int J Dent 1988;21:130-134
  34. McDonald JW, Heffner JE: Eugenol causes oxidant-mediated dema in isolated perfused rabbit lungs. Am Rev Respir Dis 1991;143:806-809 https://doi.org/10.1164/ajrccm/143.4_Pt_1.806
  35. Satoh K, Ida Y, Sakagami H, Tanaka T, Fujisawa S: Effect of antioxidants on radical intensity and cytotoxic activity of eugenol. Anticancer Res 1998;May-Jun;18(3A):1549-1552
  36. Katdare M, Jinno H, Osborne MP, Telang NT: Negative growth regulation of oncogene-transformed human breast epithelial cells by phytochemicals. Role of apoptosis. Ann NY Acad Sci 1999;889:247-252 https://doi.org/10.1111/j.1749-6632.1999.tb08742.x
  37. Katdare M, Osborne MP, Telang NT: Inhibition of aberrant proliferationand induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals. Oncol Rep 1998;5:311-315
  38. Kaufmann SH: Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res 1989;49:5870-5879
  39. Casciola-Rosen LA, Anhalt GJ, Rosen A: DNAdependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 1995;182:1625-1634 https://doi.org/10.1084/jem.182.6.1625
  40. Wang X, Pai JT, Wiedenfeld EA, Medina JC, Slaughter CA, Goldstein JL: Purification of aninterleukin-1 beta converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J Biol Chem 1995;270:18044-18050 https://doi.org/10.1074/jbc.270.30.18044
  41. Widmann C, Gibson S, Johnson GL: Caspase-dependent cleavage of signaling proteins during apoptosis.A turn-off mechanism for anti-apoptotic signals. J Biol Chem 1998;273:7141-7147 https://doi.org/10.1074/jbc.273.12.7141
  42. Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC: Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 1999;144:891-901 https://doi.org/10.1083/jcb.144.5.891
  43. Li H, Zhu H, Xu CJ, Yuan J: Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94:491-501 https://doi.org/10.1016/S0092-8674(00)81590-1
  44. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ: Caspase cleaved BID targets mitochondria and is required for ytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999;274:1156-1163 https://doi.org/10.1074/jbc.274.2.1156
  45. Bossy-Wetzel E, Green DR: Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 1999;274:17484-17490 https://doi.org/10.1074/jbc.274.25.17484
  46. Li F, Srinivasan A, Wang Y, Armstrong RC, Tomasell Fritz LC: Cell-specific induction ofapoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J Biol Chem 1997;272:30299-30305 https://doi.org/10.1074/jbc.272.48.30299
  47. Soldani C, Lazze MC, bottone MG, Tognon G, Biggiogera M, Pellicciar CE, Scovassi AI: Poly(ADP-ribose)polymerase cleavage during apoptosis: when and where. Exep. Cell Res 2001;269:193-201 https://doi.org/10.1006/excr.2001.5293
  48. Earnshaw WC, Martins LM, Kaufmann SH: Mammalian caspases : structures, activation, substrates, and fucntions during apoptosis. Annu Rev Biochem 1999;68:383-424 https://doi.org/10.1146/annurev.biochem.68.1.383
  49. C Tolis, GJ Peters, CG Ferreira, HM Pinedo, G Giaccone: Cell cycle disurbances and apoptosis induced by topotecan and Gencitabine on human lung cancer cell lines. European J Cancer 1999;35:796-807 https://doi.org/10.1016/S0959-8049(98)00425-0
  50. Hartwell LH, Kastan MB: Cell cycle control and cancer. Science 266:1821-1828, 1994 https://doi.org/10.1126/science.7997877
  51. Harris CC: Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst Oct 1996;88:1442-1455 https://doi.org/10.1093/jnci/88.20.1442