Characterization of Lactobacilli with Tannase Activity Isolated from Kimchi

  • Kwon, Tae-Yeon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shim, Sang-Min (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
  • Published : 2008.12.31

Abstract

Tannase catalyzes the hydrolysis of gallic acid esters and hydrolysable tannins. Twenty-two Lactobacillus strains with tannase activity were isolated from 7 types of kimchi. A polymerase chain reaction-based assay targeting the recA gene assigned all isolates to either Lactobacillus plantarum or Lactobacillus pentosus. The tannase activities of isolates measured in whole cells and cell-free extracts varied even within each species. The activities of the isolates varied with the assay method, but both methods indicated that isolate LT7 (identified as L. pentosus) showed the highest activity. The results of thin layer chromatography and high performance liquid chromatography, respectively, showed that tannic acid and gallic acid degraded to pyrogallol in resting L. pentosus LT7 cells. Therefore, the putative biochemical pathway for the degradation of tannic acid by L. pentosus implies that tannic acid is hydrolyzed to gallic acid and glucose, with the formed gallic acid being decarboxylated to pyrogallol. This study revealed the possible production of pyrogallol from tannic acid by the resting cell reaction with L. pentosus LT7.

Keywords

References

  1. Sasaki E, Shimada T, Osawa R, Nishitani Y, Spring S, Lang E. Isolation of tannin-degrading bacteria isolated from feces of the Japanese large wood mouse, Apodemus speciosus, feeding on tannin-rich acorns. Syst. Appl. Microbiol. 28: 358-365 (2005) https://doi.org/10.1016/j.syapm.2005.01.005
  2. Aguilar CN, Rodriguez R, Gutierrez-Sanchez G, Auguar C, Favela-Torres E, Prado-Barragan LA, Ramirez-Coronel A, Contreras-Esquivel JC. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biot. 76: 47-59 (2007) https://doi.org/10.1007/s00253-007-1000-2
  3. Bhat TK, Singh B, Sharma OP. Microbial degradation of tannins a current perspective. Biodegradation 9: 343-357 (1998) https://doi.org/10.1023/A:1008397506963
  4. Boadi DK, Neufeld RJ. Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme Microb. Tech. 28: 590-595 (2001) https://doi.org/10.1016/S0141-0229(01)00295-2
  5. Kar B, Banerjee R, Bhattacharyya BC. Optimization of physicochemical parameters for gallic acid production by evolutionary operation-factorial design technique. Process Biochem. 37: 1395-1401 (2002) https://doi.org/10.1016/S0032-9592(02)00020-1
  6. Sharma S, Gupta MN. Synthesis of antioxidant propyl gallate using tannase from Aspergillus niger van Teighem in nonaquoeous media. Bioorg. Med. Chem. Lett. 13: 395-397 (2003) https://doi.org/10.1016/S0960-894X(02)00977-0
  7. Vaquero I, Marcobal A, Munoz R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int. J. Food Microbiol. 96: 199-204 (2004) https://doi.org/10.1016/j.ijfoodmicro.2004.04.004
  8. Goel G, Puniya AK, Aguilar CN, Singh K. Interaction of gut microflora with tannins in feeds. Naturwissenschaften 92: 497-503 (2005) https://doi.org/10.1007/s00114-005-0040-7
  9. Osawa R, Kuroiso K, Goto S, Shimizu A. Isolation of tannin-degrading lactobacilli from humans and fermented foods. Appl. Environ. Microb. 66: 3093-3097 (2000) https://doi.org/10.1128/AEM.66.7.3093-3097.2000
  10. Nishitani Y, Sasaki E, Fujisawa T, Osawa R. Genotypic analysis of lactobacilli with a range of tannase activities isolated from human feces and fermented foods. System. Appl. Microbiol. 27: 109-117 (2004) https://doi.org/10.1078/0723-2020-00262
  11. Short C. The probiotic century: Historical and current perspectives. Trends Food Sci. Tech. 10: 411-417 (1999) https://doi.org/10.1016/S0924-2244(00)00035-2
  12. Lee J-S, Heo G-Y, Lee JW, Oh Y-J, Park JA, Park Y-H, Pyun Y-R, Ahn JS. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.12.010
  13. Kim M, Chun J. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  14. Lee KH, Park JY, Jeong SJ, Kwon GH, Lee HJ, Chang HC, Chung DK, Lee J-H, Kim JH. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from kimchi. J. Microbiol. Biotechn. 17: 287-296 (2007)
  15. Osawa R. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microb. 56: 829-831 (1990)
  16. Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microb. 67: 3450-3454 (2001) https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  17. Nishitani Y, Osawa R. A novel colorimetric method to quantify tannase activity of viable bacteria. J. Microbiol. Meth. 54: 281-284 (2003) https://doi.org/10.1016/S0167-7012(03)00063-0
  18. Ephraim E, Odenyo A, Ashenafi M. Isolation and characterization of tannin-degrading bacteria from faecal samples of some wild ruminants in Ethiopia. Anim. Feed Sci. Tech. 118: 243-253 (2005) https://doi.org/10.1016/j.anifeedsci.2004.10.015
  19. Alberto MR, Gomez-Cordoves C, Manca de Nadra MC. Metabolism of gallic acid and catechin by Lactobacillus hilgardii from wine. J. Agr. Food Chem. 52: 6465-6469 (2004) https://doi.org/10.1021/jf049239f
  20. LoCascio RG, Mills DA, Waterhouse AL. Reduction of catechin, rutin, and quercetin levels by interaction with food-related microorganisms in a resting state. J. Sci. Food Agr. 86: 2105-2112 (2006) https://doi.org/10.1002/jsfa.2583
  21. Lee J-H, Kim M, Um S. PCR-based detection and identification of Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum in kimchi. Food Sci. Biotechnol. 13: 754-757 (2004)
  22. Um SH, Shin WS, Lee J-H. Real-time PCR monitoring of Lactobacillus sake, Lactobacillus plantarum, and Lactobacillus paraplantarum during kimchi fermentation. Food Sci. Biotechnol. 15: 595-598 (2006)
  23. Mingshu L, Kai Y, Qiang H, Dongying J. Biodegradation of gallotannins and ellagitannins. J. Basic Microb. 46: 68-84 (2006) https://doi.org/10.1002/jobm.200510600
  24. Rodriguez H, de las Rivas B, Gomez-Cordoves C, Munoz R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 107: 664-670 (2008) https://doi.org/10.1016/j.foodchem.2007.08.063