• Title/Summary/Keyword: deductive proof

Search Result 28, Processing Time 0.023 seconds

An Analysis on the Treatment of Axiom and Proof in Middle School Mathematics (중학교 기하에서의 공리와 증명의 취급에 대한 분석)

  • Lee, Ji-Hyun
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.2
    • /
    • pp.135-148
    • /
    • 2011
  • Middle school mathematics treats axiom as mere fact verified by experiment or observation and doesn't mention it axiom. But axiom is very important to understand the difference between empirical verification and mathematical proof, intuitive geometry and deductive geometry, proof and nonproof. This study analysed textbooks and surveyed gifted students' conception of axiom. The results showed the problem and limitation of middle school mathematics on the treatment of axiom and proof.

  • PDF

A study on mathematical justification activities in elementary school (초등학생의 수학적 정당화에 관한 연구)

  • 권성룡
    • Education of Primary School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.

  • PDF

기하 증명 읽기 이해 모델의 적용 효과

  • Hwang, Chul-Ju;Lee, Ji-Youn;Kim, Sun-Hee
    • East Asian mathematical journal
    • /
    • v.25 no.3
    • /
    • pp.299-320
    • /
    • 2009
  • In mathematics, the education of the geometry proof has been playing an important role in promoting the ability for logical thinking by means of developing the deductive reasoning. However, despite of those importance mentioned above, considering the present condition for the education of the geometry proof in middle schools, it is still found that most of classes are led mainly by teachers, operating the cramming system of eduction, and students in those classes have many difficulties in learning the geometry proof course. Accordingly this thesis suggests the other method that is distinguished from previous proof educations. The thesis of Kai-Lin Yang and Fou-Lai Lin on 'A Model of Reading Comprehension of Geometry Proof (RCGP)', which was published in 2007, have various practical examples based on the model. After composing classes based on those examples and instructing the geometry proof, found out a problem. And then advance a new teaching model that amendment and supplementation However, it is considered to have limitation because subjects were minority and classes were operated by man-to-man method. Hopefully, the method of proof education will be more developed through performing more active researches on this in the nearest future.

Role of Symbol and Formation of Intuition by the Mediation of Symbols in Geometric Proof (기하 증명에서 기호의 역할과 기호 중재에 의한 직관의 형성)

  • Kim, Hee;Kim, Sun-Hee
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.4
    • /
    • pp.511-528
    • /
    • 2010
  • Students' intuition in formal proof should be expressed as symbols according to the deductive process. The symbol will play a role of the mediation between the intuition and the formal proof. This study examined the evolution process of intuition mediated by the symbol in geometry proof. According to the results first, symbol took the great roles when students had the non-formed intuition for the proposition. The signification of symbols could explain even the proof process of the proposition with the non-expectable intuition. And when students proved it by symbols, not by figure nor words, they could evolute the conclusive intuition about the proposition.

  • PDF

A Study on the Recognition and Characteristics of Mathematical Justification for Gifted Students in Middle School Mathematics (중학교 수학 영재아의 수학적 정당화에 대한 인식과 특성에 관한 연구)

  • Hong, Yong-Suk;Son, Hong-Chan
    • Journal of the Korean School Mathematics Society
    • /
    • v.24 no.3
    • /
    • pp.261-282
    • /
    • 2021
  • This study identified the meaning of mathematical justification and its characteristics for middle school math gifted students. 17 middle school math gifted students participated in questionnaires and written exams. Results show that the gifted students recognized justification in various meanings such as proof, systematization, discovery, intellectual challenge of mathematical justification, and the preference for deductive justification. As a result of justification exams, there was a difference in algebra and geometry. While there were many deductive justifications in both algebra and geometry questionnaires, the difference exists in empirical justifications: there were many empirical justifications in algebra, but there were few in geometry questions. When deductive justification was completed, the students showed satisfaction with their own justification. However, they showed dissatisfaction when they could not deductively justify the generality of the proposition using mathematical symbols. From the results of the study, it was found that justification education that can improve algebraic translation ability is necessary so that gifted students can realize the limitations and usefulness of empirical reasoning and make deductive justification.

Mathematical Connections Between Classical Euclidean Geometry and Vector Geometry from the Viewpoint of Teacher's Subject-Matter Knowledge (교과지식으로서의 유클리드 기하와 벡터기하의 연결성)

  • Lee, Ji-Hyun;Hong, Gap-Ju
    • School Mathematics
    • /
    • v.10 no.4
    • /
    • pp.573-581
    • /
    • 2008
  • School geometry takes various approaches such as deductive, analytic, and vector methods. Especially, the mathematical connections between these methods are closely related to the mathematical connections between geometry and algebra. This article analysed the geometric consequences of vector algebra from the viewpoint of teacher's subject-matter knowledge and investigated the connections between the geometric proof and the algebraic proof with vector and inner product.

  • PDF

How can we teach the 'definition' of definitions? (정의의 '정의'를 어떻게 가르칠 것인가?)

  • Lee, Jihyun
    • Journal of the Korean School Mathematics Society
    • /
    • v.16 no.4
    • /
    • pp.821-840
    • /
    • 2013
  • Definition of geometric figure in middle school geometry seems to mere meaning of the term which could be perceived visually through its shape. However, Much research reported the low achievements of definitions of basic geometric figures. It suggested the limitation of instrumental understanding. In this research, I guided gifted middle school students to reinvent definitions of basic geometric figure by the deductive organization of its properties as Freudenthal pointed. These students understood relationally about why some geometric figure can be defined this way and how it could be defined equally via other properties. This analysis of reinventing of definitions will be a stepping stone to reflect on the pedagogical problems in teaching geometry and to search the new alternatives.

  • PDF

A Study on Mathematical Justification of Elementary School Teachers (초등학교 교사들의 수학적 정당화에 대한 연구)

  • Kim, Jeong-Ha;Kang, Moon-Bong
    • Journal of Educational Research in Mathematics
    • /
    • v.19 no.3
    • /
    • pp.371-392
    • /
    • 2009
  • A lot of researches state mathematical justification is important. Specially, NCTM (2000) mentions that mathematical reasoning and proof should be taught every student from pre-primary school to 12 grades. Some of researches say elementary school students are also able to prove and justify their own solution(Lester, 1975; King, 1970, 1973; Reid, 2002). Balacheff(1987), Tall(1995), Harel & Sowder(1998, 2007), Simon & Blume(1996) categorize the level or the types of mathematical justification. We re-categorize the 4 types of mathematical justification basis on their studies; external conviction justification, empirical-inductive justification, generic justification, deductive justification. External conviction justification consists of authoritarian justification, ritual justification, non-referential symbolic justification. empirical-inductive justification consists of naive examples justification and crucial example justification. Generic justification consists of generic example and visual example. The results of this research are following. First, elementary school teachers in Korea respectively understand mathematical justification well. Second, elementary school teachers in Korea prefer deductive justification when they justify by themselves, while they prefer empirical-inductive justification when they teach students.

  • PDF

The Effects of Inductive Activities Using GeoGebra on the Proof Abilities and Attitudes of Mathematically Gifted Elementary Students (GeoGebra를 활용한 귀납활동이 초등수학영재의 증명능력 및 증명학습태도에 미치는 영향)

  • Kwon, Yoon Shin;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.123-145
    • /
    • 2013
  • This study was expected to yield the meaningful conclusions from the experimental group who took lessons based on inductive activities using GeoGebra at the beginning of proof learning and the comparison one who took traditional expository lessons based on deductive activities. The purpose of this study is to give some helpful suggestions for teaching proof to mathematically gifted elementary students. To attain the purpose, two research questions are established as follows. 1. Is there a significant difference in proof abilities between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? 2. Is there a significant difference in proof attitudes between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? To solve the above two research questions, they were divided into two groups, an experimental group of 10 students and a comparison group of 10 students, considering the results of gift and aptitude test, and the computer literacy among 20 elementary students that took lessons at some education institute for the gifted students located in K province after being selected in the mathematics. Special lesson based on the researcher's own lesson plan was treated to the experimental group while explanation-centered class based on the usual 8th grader's textbook was put into the comparison one. Four kinds of tests were used such as previous proof ability test, previous proof attitude test, subsequent proof ability test, and subsequent proof attitude test. One questionnaire survey was used only for experimental group. In the case of attitude toward proof test, the score of questions was calculated by 5-point Likert scale, and in the case of proof ability test was calculated by proper rating standard. The analysis of materials were performed with t-test using the SPSS V.18 statistical program. The following results have been drawn. First, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in proof ability than the comparison group who took traditional proof lessons. Second, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in the belief and attitude toward proof than the comparison group who took traditional proof lessons. Third, the survey about 'the effect of inductive activities using GeoGebra on the proof' shows that 100% of the students said that the activities were helpful for proof learning and that 60% of the reasons were 'because GeoGebra can help verify processes visually'. That means it gives positive effects on proof learning that students research constant character and make proposition by themselves justifying assumption and conclusion by changing figures through the function of estimation and drag in investigative software GeoGebra. In conclusion, this study may provide helpful suggestions in improving geometry education, through leading students to learn positive and active proof, connecting the learning processes such as induction based on activity using GeoGebra, simple deduction from induction(i.e. creating a proposition to distinguish between assumptions and conclusions), and formal deduction(i.e. proving).

An Efficient Evaluation of Proof-theoretic meaning for Normalized Recursive Rules using Shared-nothing Parallel Architecture (비공유 병렬구조를 이용한 정규화된 재귀규칙에 대한 증명-이론적 의미의 효율적 계산)

  • Cho, Woo-Hyun;Lee, Jong-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.11
    • /
    • pp.2981-2988
    • /
    • 1999
  • A deductive database consists of facts being the extensional database and rules being the intensional database. Because of the difficulty of evaluating rules, many parallel evaluation algorithms for rules have been presented. But we have not gotten an acceptable result. This paper proposes a new methodology to evaluate proof-theoretic meaning of the linear recursion rule which contains transitive dependency by using a shared-nothing parallel architecture. As first, we prove that there exists the equivalent expression for a linear recursion rule, design the algorithm for evaluating the linear recursion rule based on the equivalent expression, and finally analyse performance of the proposed algorithm.

  • PDF