• Title/Summary/Keyword: data flip-flop

Search Result 38, Processing Time 0.017 seconds

Design and Measurement of an SFQ OR gate composed of a D Flip-Flop and a Confluence Buffer (D Flip-Flop과 Confluence Buffer로 구성된 단자속 양자 OR gate의 설계와 측정)

  • 정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.127-131
    • /
    • 2003
  • We have designed and measured an SFQ(Single Flux Quantum) OR gate for a superconducting ALU (Arithmetic Logic Unit). To optimize the circuit, we used WRspice, XIC and Lmeter for simulations and layouts. The OR gate was consisted of a Confluence Buffer and a D Flip-Flop. When a pulse enters into the OR gate, the pulse does not propagate to the other input port because of the Confluence Buffer. A role of D Flip-Flip is expelling the data when the clock is entered into D Flip-Flop. For the measurement of the OR gate operation, we attached three DC/SFQs, three SFQ/DCs and one RS Flip -Flop to the OR gate. DC/SFQ circuits were used to generate the data pulses and clock pulses. Input frequency of 10kHz and 1MHzwere used to generate the SFQ pulses from DC/SFQ circuits. Output data from OR gate moved to RS flip -Flop to display the output on the oscilloscope. We obtained bias margins of the D Flip -Flop and the Confluence Buffer from the measurements. The measured bias margins $\pm$38.6% and $\pm$23.2% for D Flip-Flop and Confluence Buffer, respectively The circuit was measured at the liquid helium temperature.

  • PDF

Dual Edge-Triggered NAND-Keeper Flip-Flop for High-Performance VLSI

  • Kim, Jae-Il;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.102-106
    • /
    • 2003
  • This paper describes novel low-power high-speed flip-flop called dual edge-triggered NAND keeper flip-flop (DETNKFF). The flip-flop achieves substantial power reduction by incorporating dual edge-triggered operation and by eliminating redundant transitions. It also minimizes the data-to-output latency by reducing the height of transistor stack on the critical path. Moreover, DETNKFF allows negative setup time to provide useful attribute of soft clock edge by incorporating the pulse-triggered operation. The proposed flip-flop was designed using a $0.35{\;}\mutextrm{m}$ CMOS technology. The simulation results indicate that, for the typical input switching activity of 0.3, DETNKFF reduces power consumption by as much as 21 %. Latency is also improved by about 6 % as compared to the conventional flip-flop. The improvement of power-delay product is also as much as 25 %.

High Speed Pulse-based Flip-Flop with Pseudo MUX-type Scan for Standard Cell Library

  • Kim, Min-Su;Han, Sang-Shin;Chae, Kyoung-Kuk;Kim, Chung-Hee;Jung, Gun-Ok;Kim, Kwang-Il;Park, Jin-Young;Shin, Young-Min;Park, Sung-Bae;Jun, Young-Hyun;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2006
  • This paper presents a high-speed pulse-based flip-flop with pseudo MUX-type scan compatible with the conventional master-slave flip-flop with MUX-type scan. The proposed flip-flop was implemented as the standard cell library using Samsung 130nm HS technology. The data-to-output delay and power-delay-product of the proposed flip-flop are reduced by up to 59% and 49%, respectively. By using this flop-flop, ARM11 softcore has achieved the maximum 1GHz operating speed.

Low Power Flip-Flop Circuit with a Minimization of Internal Node Transition (인터널 노드 변환을 최소화시킨 저전력 플립플롭 회로)

  • Hyung-gyu Choi;Su-yeon Yun;Soo-youn Kim;Min-kyu Song
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • This paper presents a low-power flip-flop(FF) circuit that minimizes the transition of internal nodes by using a dual change-sensing method. The proposed dual change-sensing FF(DCSFF) shows the lowest dynamic power consumption among conventional FFs, when there is no input data transition. From the measured results with 65nm CMOS process, the power consumption has been reduced by 98% and 32%, when the data activity is 0% and 100%, respectively, compared to conventional transmission gate FF(TGFF). Further, compared to change-sensing FF(CSFF), the power consumption of proposed DCSFF is smaller by 30%.

A Design of a Ternary Storage Elements Using CMOS Ternary Logic Gates (CMOS 3치 논리 게이트를 이용한 3치 저장 소자 설계)

  • Yoon, Byoung-Hee;Byun, Gi-Young;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.47-53
    • /
    • 2004
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are composed with ternary voltage mode NMAX, NMIN, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.35um CMOS technology and 3.3Volts supply voltage. The architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

Variable Sampling Window Flip-Flops for High-Speed Low-Power VLSI (고속 저전력 VLSI를 위한 가변 샘플링 윈도우 플립-플롭의 설계)

  • Shin Sang-Dae;Kong Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.35-42
    • /
    • 2005
  • This paper describes novel flip-flops with improved robustness and reduced power consumption. Variable sampling window flip-flop (VSWFF) adjusts the width of the sampling window according to input data, providing robust data latching as well as shorter hold time. The flip-flop also reduces power consumption for higher input switching activities as compared to the conventional low-power flip-flop. Clock swing-reduced variable sampling window flip-flop (CSR-VSWFF) reduces clock power consumption by allowing the use of a small swing clock. Unlike conventional reduced clock swing flip-flops, it requires no additional voltage higher than the supply voltage, eliminating design overhead related to the generation and distribution of this voltage. Simulation results indicate that the proposed flip-flops provide uniform latency for narrower sampling window and improved power-delay product as compared to conventional flip-flops. To evaluate the performance of the proposed flip-flops, test structures were designed and implemented in a $0.3\mu m$ CMOS process technology. Experimental result indicates that VSWFF yields power reduction for the maximum input switching activity, and a synchronous counter designed with CSR-VSWFF improves performance in terms of power consumption with no use of extra voltage higher than the supply voltage.

Circuit Design of a Ternary Flip-Flop Using Ternary Logic Gates

  • Kim, Jong-Heon;Hwang, Jong-Hak;Park, Seung-Young;Kim, Heung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.347-350
    • /
    • 2000
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are fabricated with ternary voltage mode NOR, NAND, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, a lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.25 micron CMOS technology and 2.5 volts supply voltage. The Architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

Circuit Design and Simulation Study of an RSFQ Switch Element for Optical Network Switch Applications (광 네트워크 스위치 응용을 위한 RSFQ Switch의 회로 설계 및 시뮬레이션)

  • 홍희송;정구락;박종혁;임해용;장영록;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.13-16
    • /
    • 2003
  • In this work, we have studied about an RSFQ (Rapid Single Flux Quantum) switch element. The circuit was designed, simulated, and laid out for mask fabrication. The switch cell was composed of a D flip-flop, a splitter, a confluence buffer, and a switch core. The switch core determined if the input data could pass to the output. “On” and o“off” controls in the switch core could be possible by utilizing an RS flip-flop. When a control pulse was input to the “on” port, the RS flip-flop was in the set state and passed the input pulses to the output port. When a pulse was input to the “off” port, the RS flip-flop was in the reset state and prevented the input pulses from transferring to the output port. We simulated and optimized the switch element circuit by using Xic, WRspice, and Julia. The minimum circuit margins in simulations were more than $\pm$20%. We also performed the mask layout of the circuit by using Xic and Lmeter.

  • PDF

Low-area Duty Cycle Correction Circuit for Voltage-Controlled Ring Oscillator (전압제어 링 발진기용 저-면적 듀티 사이클 보정 회로)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.103-107
    • /
    • 2019
  • Recently, many technologies have been developed to realize low power high speed digital data communication and one of them is related to duty cycle correction. In this paper, a low-area duty cycle correction circuit for a voltage-controlled ring generator is proposed. The duty cycle correction circuit is a circuit that corrects the duty cycle using a 180 degree phase difference of a voltage controlled ring oscillator. The proposed low-area duty cycle circuit changes a conventional flip-flop to a true single phase clocking (TSPC) flip-flop And a low-area high-performance circuit is realized. By using TSPC flip-flop instead of general flip-flop, it is possible to realize low-area circuit compared to existing circuit, and it is expected to be used for high-performance circuit for low-power because it is easy to operate at high speed.

Design and Measurement of SFQ DFFC and Inverter (단자속 양자 DFFC와 Inverter의 설계와 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.17-20
    • /
    • 2003
  • We have designed and measured a SFQ(Single Flux Quantum) DFFC and an Inverter(NOT) for superconducting ALU(Arithmetic Logic Unit) development. To optimize the circuit, we used Julia, XIC, and L meter for circuit simulations and circuit layouts. The Inverter was consisted of a D Flip-Flop, a data input, a clock input and a data output. If a data pulse arrives at the inverter, then the output reads ‘0’ (no output pulse is produced) at the next clock period. If there is no input data pulse, it reads out ‘1’(output pulse is produced). The DFFC was consisted of a D flip-Flop, an Inverter, a Data in, a Clock in and two outputs. If a data pulse arrives at the DFFC circuit, then the output2 reads ‘1’ at the next clock period, otherwise it reads out ‘1’ to output1. Operation of the fabricated chip was performed at the liquid helium temperature and at the frequencies of 1KHz.

  • PDF