• Title/Summary/Keyword: cytb

Search Result 42, Processing Time 0.028 seconds

Identification of Albula sp. (Albulidae: Albuliformes) Leptocephalus Collected from the Southern Coastal Waters of Korea using Cytochrome b DNA Sequences

  • Kim, Byung-Jik;Kim, Sung;Seo, Hyun-Seok;Oh, Jin-A
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • A single specimen of Albula leptocephalus (55.7 mm SL) was collected from the southern coastal waters of Korea using an aquatic lamp. It is characterized by having a ribbon-like body with a small head and a well-forked caudal fin. Although the general appearance was similar to the leptocephalus of A. vulpes including myomere counts and fin ray counts, the melanophore deposition was different from that of A. vulpes. This leptocephalus specimen was confirmed with A. forsteri using the cytochrome b mtDNA (Cytb) analysis. The genetic distance of Cytb between the present leptocephalus and A. forsteri is 0.006-0.038, which falls into the cutoff point separating Albula species into eight deep lineages including the four valid species. Its genetic characteristic have more similarities to those of Fiji than those of Hawaii and the Northern territory of Australia.

Sequence Analysis of cytb Gene in Echinococcus granulosus from Western China

  • Zhong, Xiuqin;Wang, Ning;Hu, Dandan;Wang, Jiahai;Liu, Tianyu;Gu, Xiaobin;Wang, Shuxian;Peng, Xuerong;Yang, Guangyou
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.2
    • /
    • pp.205-209
    • /
    • 2014
  • Echinococcus granulosus is the causative agent of cystic echinococcosis with medical and veterinary importance in China. Our main objective was to discuss the genotypes and genetic diversity of E. granulosus present in domestic animals and humans in western China. A total of 45 hydatid cyst samples were collected from sheep, humans, and a yak and subjected to an analysis of the sequences of mitochondrial cytochrome b (cytb) gene. The amplified PCR product for all samples was a 1,068 bp band. The phylogenetic analysis showed that all 45 samples were identified as E. granulosus (genotype G1). Ten haplotypes were detected among the samples, with the main haplotype being H1. The haplotype diversity was 0.626, while the nucleotide diversity was 0.001. These results suggested that genetic diversity was low among our samples collected from the west of China based on cytb gene analysis. These findings may provide more information on molecular characteristics of E. granulosus from this Chinese region.

Genetic Variation of Taenia Pisiformis Collected from Sichuan, China, Based on the Mitochondrial Cytochrome b gene

  • Yang, Deying;Ren, Yongjun;Fu, Yan;Xie, Yue;Nie, Huaming;Nong, Xiang;Gu, Xiaobin;Wang, Shuxian;Peng, Xuerong;Yang, Guangyou
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.449-452
    • /
    • 2013
  • Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. $F_{ST}$ and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

Genetic Species Identification by Sequencing Analysis of Nuclear and Mitochondrial Genes for Albino Misgurnus Species from Korea (우리나라 미꾸리속(genus Misgurnus) 알비노 개체의 미토콘드리아 및 핵 유전자 염기서열 분석에 의한 유전적 동정)

  • Song, Ha-Youn;Moon, Shin-Joo;Kim, Keun-Sik;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • The spontaneous color mutant, albino individuals of genus Misgurnus, are rarely discovered in Korea and there are difficult to identify morphological species due to lack melanin pigmentation. In this study, we developed a genetic identification method for the species of albino Misgurnus individuals based on phylogenetic analysis by using recombination activating gene 1 (rag1) and cytochrome b (cytb) region of mitochondrial DNA. As a result of molecular phylogenetic analysis, three clades were identified as Misgurnus mizolepis, M. anguillicaudatus and M. mohoity. The homology of the cytb sequences of M. mohoity was best match to that of M. mohoity sequences in GenBank database. As a result of species identification of 25 albino Misgurnus individuals based on the phylogenetic tree, the red-eye type was identified as 16 M. anguillicaudatus and one M. mizolepis. The remaining three individuals were identified as one M. mizolepis ♀${\times}$M. anguillicaudatus ♂, and two M. mohoity ♀${\times}$M. anguillicaudatus ♂, respectively. In addition, the five black-eye type individuals were identified as one M. anguillicaudatus, three M. mizolepis and one M. mohoity. Therefore, this genetic identification method will be an useful techniques for species or hybrid identification in genus Misgurnus.

Genetic Population Structure and Phylogenetic Relationship of the Large-footed Bat (Myotis macrodactylus) on Jeju Island (제주도 큰발윗수염박쥐(Myotis macrodactylus)의 유전적 집단 구조와 계통 유연관계)

  • Kim, Yoo-Kyung;Park, Su-Gon;Han, Sang-Hoon;Han, Sang-Hyun;Oh, Hong-Shik
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.749-757
    • /
    • 2016
  • This study was carried out to reveal the genetic population structure of the Jeju Island population and the phylogenetic relationship of East Asian populations of the large-footed bat (Myotis macrodactylus) based on the genetic polymorphisms of mitochondrial cytochrome B (CYTB) and NADH dehydrogenase subunit 1 (ND1) gene sequences. A total of fourteen and nine haplotypes were found in the CYTB and ND1 sequences from East Asian bats, respectively. Haplotype distribution showed locality specific patterns. The results from ND1 haplotype analysis showed that the Jeju Island population has four haplotypes: the Mt. Halla and Western subpopulations have three ND1 haplotypes, but the Eastern subpopulation has just a single haplotype Nd03, which is commonly found on this island. The neighbor-joining (NJ) tree showed the closer relationship between Jeju Island and Japan rather than that between Jeju and Gangwon-do Province. The divergence time between the maternal ancestor lineages of Japanese and Chinese populations was estimated to be 0.789±0.063 MYBP. The secondary divergence between Jeju and Japanese bats was calculated about to be 0.168±0.013 MYBP. The Jeju population has immigrated to the island at least fifty thousand years ago. In addition, ND1 haplotype analysis suggested that the insular bats have experienced at least two further genetic differentiation events within this island. Consequently, these findings suggested that the results of this study may play a critical role in understanding the phylogenetic relationship among East Asian bat populations of M. macrodactylus. To prepare more explainable information on evolutionary correlation, analysis is still required to examine using expanded samples from China, Russia, and southern parts of the Korean Peninsula.

The List of Korean Organisms Registered in the NCBI Nucleotide Database for Environmental DNA Research (환경유전자 연구를 위한 NCBI Nucleotide 데이터베이스에 등록된 국내 생물 목록 현황)

  • Ihn-Sil Kwak;Chang Woo Ji;Won-Seok Kim;Dongsoo Kong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.352-359
    • /
    • 2022
  • Recently, with the development of genetic technology, interest in environmental DNA (eDNA) to study biodiversity according to molecular biological approaches is increasing. Environmental DNA has many advantages over traditional research methods for biological communities distributed in the environment but highly depends on the established base sequence database. This study conducted a comprehensive analysis of the habitat status and classification at the genus level, which is mainly used in eDNA (12S rRNA, 16S rRNA, 18S rRNA, COI, and CYTB), focusing on Korean registration taxon groups (phytoplankton, zooplankton, macroinvertebrates, and fish). As a result, phytoplankton and zooplankton showed the highest taxa proportion in 18S rRNA, and macroinvertebrates observed the highest ratio in the nucleotide sequence database in COI. In fish, all genes except 18S rRNA showed a high taxon ratio. Based on the Korean registration taxon group, the gene construction of the top 20 genera according to bio density observed that most of the phytoplankton were registered in 18S rRNA, and the most significant number of COI nucleotide sequences were established in macroinvertebrates. In addition, it was confirmed that there is a nucleotide sequence for the top 20 genera in 12S rRNA, 16S rRNA, and CYTB in fish. These results provided comprehensive information on the genes suitable for eDNA research for each taxon group.

Analysis of Genetic Diversity across Newly Occupied Habitats within the Goryeong Population of Pungitius kaibarae Using the Mitochondrial Cytb Gene (미토콘드리아 Cytb 유전자를 이용한 잔가시고기의 신규 서식지 고령 회천 집단의 유전적 다양성 분석)

  • Kang-Rae Kim;Mu-Sung Sung;Yujin Hwang;Myeong Seok Lee;Ju Hui Jeong;Heesoo Kim;Jeong-Nam Yu
    • Korean Journal of Ichthyology
    • /
    • v.35 no.4
    • /
    • pp.217-223
    • /
    • 2023
  • The 886-bp sequence of the mitochondrial region encoding the cytb gene was used to identify the origin of the Goryeong (GR) population of Pungitius kaibarae and to characterize genetic diversity and structure among wild populations. The GR population showed the lowest haplotype diversity (Hd=0.000), while the highest haplotype diversity was confirmed at 0.755 among the Goseoung (GS) population. Nucleotide diversity ranged was the highest diversity at 0.00291 in the GS population and the lowest diversity at 0.00000 in the GR population. The GR population was genetically closest to the Pohang (PH) population. The haplotype network confirmed that the GR population was most similar to the PH population. The GR population also clustered with the PH population with high bootstrap support (98%) in a phylogenetic tree. We thus conclude that the GR population is derived from a population similar to the PH population.

Infection of Taenia asiatica in a Bai Person in Dali, China

  • Wang, Li;Luo, Xuenong;Hou, Junling;Guo, Aijiang;Zhang, Shaohua;Li, Hailong;Cai, Xuepeng
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.67-70
    • /
    • 2016
  • We report here a human case of Taenia asiatica infection which was confirmed by genetic analyses in Dali, China. A patient was found to have symptoms of taeniasis with discharge of tapeworm proglottids. By sequencing of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, we observed nucleotide sequence identity of 99% with T. asiatica and 96% with T. saginata. Using the cytochrome b (cytb) gene, 99% identity with T. asiatica and 96% identity with T. saginata were found. Our findings suggest that taeniasis of people in Dali, China may be mainly caused by T. asiatica.

Molecular identification of selected parrot eggs using a non-destructive sampling method

  • Jung-Il Kim;Jong-Won Baek;Chang-Bae Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.145-166
    • /
    • 2023
  • Parrots have been threatened by global trade to meet their high demand as pets. Controlling parrot trade is essential because parrots play a vital role in the ecosystem. Accurate species identification is crucial for controlling parrot trade. Parrots have been traded as eggs due to their advantages of lower mortality rates and more accessible transport than live parrots. A molecular method is required to identify parrot eggs because it is difficult to perform identification using morphological features. In this study, DNAs were obtained from 43 unidentified parrot eggs using a non-destructive sampling method. Partial cytochrome b (CYTB) gene was then successfully amplified using polymerase chain reaction (PCR) and sequenced. Sequences newly obtained in the present study were compared to those available in the GenBank by database searching. In addition, phylogenetic analysis was conducted to identify species using available sequences in GenBank along with sequences reported in previous studies. Finally, the 43 parrot eggs were successfully identified as seven species belonging to two families and seven genera. This non-destructive sampling method for obtaining DNA and molecular identification might help control the trade of parrot eggs and prevent their illegal trade.

Monitoring of Bifenazate Resistant Two-spotted Spider Mite, Tetranychus urticae Using Molecular Detection Method (분자학적 진단방법을 이용한 bifenazate 저항성 점박이응애 모니터링)

  • Lee, Kyu-Ri;Shin, Yun-Ho;Cho, Sun-Ran;Koo, Hyun-Na;Choi, Jang-Jeon;Ahn, Ki-Su;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In 2010, two-spotted spider mite, Tetranychus urticae was collected from the rose greenhouse and apple orchards in Cheongju (CJ), Chungju (CUJ)-1, CUJ-2, Kangjin (KJ), Yesan (YS), and Yeongju (YJ). Among them, KJ and YS strain showed high resistance to bifenazate of 964.5- and 1l30-fold, respectively. The other strains showed low resistance to bifenazate. By analyzing the mitochondrial cytochrome b (cytb) sequence, G126S point mutation was detected in KJ and YS strain. Thus, G126S point mutation in the mitochondrial cytb was available molecular detection marker for selection of bifenazate resistant T. urticae. Two molecular detection methods, quantitative sequencing (QS) and PCR amplification of specific alleles (PASA) were well detected specific G126S point mutation. Therefore, these methods can be used to monitor the resistance allele in field population of T. urticae and bifenazate resistance management strategy.