Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.7.749

Genetic Population Structure and Phylogenetic Relationship of the Large-footed Bat (Myotis macrodactylus) on Jeju Island  

Kim, Yoo-Kyung (Faculty of Science Education, Jeju National University)
Park, Su-Gon (Faculty of Science Education, Jeju National University)
Han, Sang-Hoon (National Institute of Biological Resources)
Han, Sang-Hyun (Educational Science Research Institute, Jeju National University)
Oh, Hong-Shik (Faculty of Science Education, Jeju National University)
Publication Information
Journal of Life Science / v.26, no.7, 2016 , pp. 749-757 More about this Journal
Abstract
This study was carried out to reveal the genetic population structure of the Jeju Island population and the phylogenetic relationship of East Asian populations of the large-footed bat (Myotis macrodactylus) based on the genetic polymorphisms of mitochondrial cytochrome B (CYTB) and NADH dehydrogenase subunit 1 (ND1) gene sequences. A total of fourteen and nine haplotypes were found in the CYTB and ND1 sequences from East Asian bats, respectively. Haplotype distribution showed locality specific patterns. The results from ND1 haplotype analysis showed that the Jeju Island population has four haplotypes: the Mt. Halla and Western subpopulations have three ND1 haplotypes, but the Eastern subpopulation has just a single haplotype Nd03, which is commonly found on this island. The neighbor-joining (NJ) tree showed the closer relationship between Jeju Island and Japan rather than that between Jeju and Gangwon-do Province. The divergence time between the maternal ancestor lineages of Japanese and Chinese populations was estimated to be 0.789±0.063 MYBP. The secondary divergence between Jeju and Japanese bats was calculated about to be 0.168±0.013 MYBP. The Jeju population has immigrated to the island at least fifty thousand years ago. In addition, ND1 haplotype analysis suggested that the insular bats have experienced at least two further genetic differentiation events within this island. Consequently, these findings suggested that the results of this study may play a critical role in understanding the phylogenetic relationship among East Asian bat populations of M. macrodactylus. To prepare more explainable information on evolutionary correlation, analysis is still required to examine using expanded samples from China, Russia, and southern parts of the Korean Peninsula.
Keywords
Divergence time; haplotype; maternal lineage; mtDNA; Myotis macrodactylus;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Agnarsson, I., Zambrana-Torrelio, C. M., Flores-Saldana, N. P. and May-Collado, L. J. 2011. A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr. 4, 3.
2 Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R. and Young, I. G. 1981. Sequence and organization of the human mitochondrial genome. Nature 290, 457-465.   DOI
3 Bastian, S. T. Jr., Malcampo, R. A., Yamagata, T. and Namikawa, T. 2010. Phylogenetic relationship of select species of Microbats in Mindanao based on complete sequences of Cytb gene. Unpublished.
4 Chung, C. H. and Oh, K. H. 2010. Holocene paleovegetation and paleoclimate of Hannam-ri area, Jeju, based on pollen analysis. J. Paleont. Soc. Korea 26, 165-172.
5 Coraman, E., Furman, A., Karatas, A. and Bilgin, R. 2013. Phylogeographic analysis of Anatolian bats highlights the importance of the region for preserving the Chiropteran mitochondrial genetic diversity in the Western Palaearctic. Conserv. Genet. 14, 1205-1216.   DOI
6 Datzmann, T., Dolch, D., Batsaikhan, N., Kiefer, A., Helbig-Bonitz, M,. Zophel, U., Stubbe, M. and Mayer, M. 2012. Cryptic diversity in Mongolian Vespertilionid bats (Vespertilionidae, Chiroptera, Mammalia). Results of the Mongolian-German biological expeditions since 1962, no. 299. Acta Chiropt. 14, 243-264.   DOI
7 Fenton, M. B. and Simmons, N. B. 2014. A World of Science and Mystery Bats. pp. 10-11. The University of Chicago press.
8 Han, S. H., Fukui, D., Chong, C. U., Choi, Y. G., Kim, S. S. and Jun, J. M. 2011. Biodiversity and Phylogenetic Research of Bats in Forests(1). pp. 63. National Institute of Biological Resources. Incheon.
9 Han, S. H., Iwasa, M. A., Ohdachi, S. D., Oh, H. S., Suzuki, H., Tsuchiya, K. and Abe, H. 2002. Molecular phylogeny of Crocidura shrews in northeastern Asia: A special reference to specimens on Cheju Island, South Korea. Acta Theriol. 47, 369-379.   DOI
10 Irwin, D. M., Kocher, D. T. and Wilson, A. C. 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128-144.   DOI
11 Jin, J. H. and Chough, S. K. 1998. Partitioning of transgressive deposits in the SE Yellow Sea: a sequence stratigraphic interpretation. Marine Geol. 149, 79-92.   DOI
12 Jo, Y. S., Kim, T. W., Choi, B. J. and Oh, H. S. 2012. Current status of terrestial mammals on Jeju Island. J. Species Res. 1, 249-56.   DOI
13 Kobayashi, F., Fukui, D., Kojima, E. and Masuda, R. 2012. Population genetic structure of the Japanese large-footed bat(Myotis macrodactylus) along three rivers on Hokkaido Island, Northern Japan. Mamm. Stud. 37, 227-235.   DOI
14 Kawai, K., Nikaido, M., Harada, M., Matsumura, S., Lin, L. K., Wu, Y., Hasegawa, M. and Okada, N. 2002. Intra- and interfamily relationships of Vespertilionidae inferred by various molecular markers including SINE insertion data .J. Mol. Evol. 55, 284-301.   DOI
15 Kawai, K., Nikaido, M., Harada, M., Matsumura, S., Lin, L. K., Wu, Y., Hasegawa, M. and Okada, N. 2003. The status of the Japanese and East Asian bats of the genus Myotis(Vespertilionidae) based on mitochondrial sequences. Mol. Phylogenet. Evol. 28, 297-307.   DOI
16 Kim, C. B., Kim, J. Y., Kim, K. S. and Lim, H. S. 2010. New age constraints for hominid footprints found on Jeju Island, South Korea. J. Archaeol. Sci. 37, 3338-3343.   DOI
17 Koyanagi, K., Yoshino, H., Tamura, H. and Han, S. H. 2009. Faunal survey of bats in Jeju Island, Korea. Bull. Asian Bat Res. Institute 8, 37-44.
18 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., Mcgettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.   DOI
19 Librado, P. and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.   DOI
20 Mayer, F. and von Helversen, O. 2001. Cryptic diversity in European bats. P. Roy. Soc. Lond., B-Biol. Sci. 268, 1825-1832.   DOI
21 Mayer, F., Dietz, C. and Kiefer, A. 2007. Molecular species identification boosts bat diversity. Front. Zool. 4, 4.   DOI
22 Oh, D. 2014. Geographical distribution of Korean bats and morphology of its skull. pp. 49-68. Master thesis, Incheon Natl. Univ.
23 Mori, T. 1928. On the Chiroptera of Korea. Zool. Mag. Tokyo 40, 282-303.
24 Niu, H. and Ma, H. Molecular study on systematics and population of Miniopterus schreibersii (Chiroptera: Vespertilionidae). Unpublished.
25 Nabholz, B., Gléminm, S. and Galtier, N. 2008. Strong variations of mitochondrial mutation rate across mammals the longevity typothesis. Mol. Biol. Evol. 25, 120-130.
26 Oh, D. J., Kim, T. W., Chang, M. H., Han, S. H., Oh, H. S. and Kim, S. J. 2013. Migration route estimation of the Jeju striped field mouse Apodemus agrarius chejuensis(Rodentia, Muridae). Mitochondr. DNA 24, 137-144.   DOI
27 Oh, H. S. 2006. Mammals of Mt. Halla, Korea. In Report of Survey of Hallasan Natural Reserve. pp. 139-153. Research Institute for Mt. Halla, Jeju Special Self-Governing Province. Jeju.
28 Oh, H. S., Chang, M. H. and Kim, B. S. 2007. Current status of mammals in Hallasan National Park. Kor. J. Eviron. Ecol. 21, 235-242.
29 Oh, H. S. and Mori, T. 1998. Taxonomic re-examination of the striped field mouse, Apodemus agrarius coreae and A. a. chejuensis: Evidence from crossbreeding experiments (Mammalia: Rodentia). J. Fac. Agr. Kyushu Univ. 43, 143-151.
30 Oh, H. S., Yoshinaga, Y., Kaneko, T., Iida, H. and Mori, T. 2003. Taxomic re-examination of the Apodemus agrarius chejuensis, comparing external and cranial morphological characters among four Asian Apodemus species. J. Fac. Agr. Kyushu Univ. 47, 373-386.
31 Ota, H. 1998. Geographic patterns of endemism and speciation in amphibians and reptiles of the Ryukyu Archipelago, Japan, with special reference to their paleogeographical implications. Res. Popul. Ecol. 40, 189-204.   DOI
32 Ohdachi, S. D., Abe, H. and Han, S. H. 2003. Phylogenetical positions of Sorex sp. (Insectivora, Mammalia) from Cheju Island and S. caecutiens from the Korean Peninsula, inferred from mitochondrial cytochrome b gene sequences. Zool. Sci. 20, 91-95.   DOI
33 Ohdachi, S. D., Iwasa, M. A., Nesterenko, V. A., Abe, H., Masuda, R. and Haberl, W. 2004. Molecular phylogenetics of Crocidura shrews (Insectivora) in East and Central Asia. J. Mammal. 82, 396-403.
34 Ohshima, K. 1990. The history of straits around the Japanese Islands in the Late-Quaternary. Quat. Res. 29, 193-208.   DOI
35 Park, S. G., Kim, Y. K., Kim, T. W., Park, J. H., Adhikari, P., Kim, G. R., Park, S. M., Lee, J. W., Han, S. H. and Oh, H. S. 2015. A study on the distribution of bats (Chiroptera) in Jeju Island, Korea. Kor. J. Environ. Biol. 33, 394-402.   DOI
36 Puechmaille, S. J., Allegrini, B., Boston, E. S. M., Dubourg-Savage, M. J., Evine, A., Knochel, A., Bris, Y. L., Lecoq, V., Lemaire, M., Rist, D. and Teeling, E. C. 2012. Genetic analysis reveals further cryptic lineages within the Myotis nattereri species complex. Mamm. Biol. 77, 224-228.   DOI
37 Ruedi, M. and Mayer, F. 2001. Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Mol. Phylogenet. Evol. 21, 436-448.   DOI
38 Ruedi, M., Stadelmanna, B., Gager, Y., Douzery, E. J. P., Francis, C. M., Lin, L. K., Guillén-Servent, A. and Cibois, A. 2013. Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammlia, Chiroptera). Mol. Phylogenet. Evol. 69, 437-449.   DOI
39 Sohn, Y. K., Park, J. B., Khim, B. K., Park, K. H. and Koh, G. W. 2002. Stratigraphy, petrochemistry and Quaternary depositional record of the Songaksan tuff ring, Jeju Island, Korea. J. Volcanol. Geotherm. Res. 119, 1-20.
40 Sakai, T., Kikkawa, Y., Tsuchiya, K., Harada, M., Kanoe, M., Yoshiyuki, M. and Yonekawa, M. 2003. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene. Genes Genet. Syst. 78, 179-189.   DOI
41 Son, S. W. 1981. Notes on some bats from the Jejoo Islands. 8, 161-169.
42 Son, S. W. 2001. Bats. pp. 92-105. Jiseong Natural History series 3, Jiseongsa, Seoul.
43 Stadelmann, B., Jacobs, D.S., Schoeman, C. and Ruedi, M. 2004. Phylogeny of African myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropt. 6, 177-192.   DOI
44 Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.
45 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
46 Tan, X. and Feng, J. Molecular phylogeny of China bats of the genus Myotis (Chiroptera, Vespertilionidae) based on mitochondrial sequences. Unpublished.
47 Tsytsulina, K., Dick, M. L., Maeda, K. and Masuda, R. 2012. Systematics and phylogeography of the steppe myotis Myotis aurascens Kuzyakin, 1935(Chiroptera, Vespertilionidae). Russ. J. Theriol. 11, 1-20.
48 Yoon, M. H., Han, S. H., Oh, H. S. and Kim, J. G. 2004. The Mammals of Korea, pp. 36-94, Dongbang Media, Seoul.
49 Yoon, M. H. 2010. Vertebrate Fauna of Korea, vol.5, no.1: Bats. In Flora and Fauna of Korea, pp. 123, National Institute of Biological Resources, Incheon.