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INTRODUCTION

The larval stage of the tapeworm Taenia pisiformis (Cestoda: 
Taeniidae) is the causative agent of cysticercosis in rabbits, and 
is globally distributed [1,2]. T. pisiformis cysticercosis usually 
parasitizes the liver capsule, gastric omentum majus, and mes-
entery of rabbits, while adult T. pisiformis establish and mature 
in the small intestine of dogs and foxes. China is the world's 
largest producer of rabbits [3], and T. pisiformis has become one 
of the most common parasites to severely affect rabbit breed-
ing. It mainly causes autologous poisoning and emaciation, 
but can also weaken resistance to other diseases; it may even 
cause death [4]. However, insufficient studies on genetic varia-
tion of T. pisiformis in China have been carried out to date. Due 
to faster mutation rates of mitochondrial DNA (mtDNA) se-
quences than nuclear genes [5] and the absence of host selec-

tion pressures [6], mtDNA sequences are considered to be more 
suitable to discriminate between closely related organisms [7]. 

Mitochondrial genes have successfully been used to study 
genetic variation, and enable a focus on the genetic origin, 
scope, and genotype of organisms [8]. The structure and func-
tion of cytochrome b (cytb) have been verified in mtDNA se-
quences of cestodes and maintain a moderate evolutionary 
speed. Thus, cytb has been used to study the population struc-
ture and genetic differentiation of several tapeworm species 
[9,10]. In this study, we determined the genetic variation of T. 

pisiformis based on partial cytb gene sequences from Sichuan 
Province, China.

MATERIALS AND METHODS

Sample collection
A total of 53 isolates were collected from routine autopsies 

in 8 geographical regions of Sichuan Province, China. The re-
gions included Ya’an (7 isolates, YA1-YA7), Chengdu (7 isolates, 
CD1-CD7), Panzhihua (6 isolates, PZ1-PZ6), Leshan (7 isolates, 
LS1-LS7), Guangyuan (7 isolates, GY1-GY7), Luzhou (7 iso-
lates, LZ1-LZ7), Guang’an (6 isolates, GA1-GA6), and Aba (6 
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isolates, AB1-AB6) (Fig. 1). The maintenance and care of the 
rabbits used in this study was in strict accordance with good 
animal practice regulations.

DNA extraction and PCR conditions
Approximately 0.5 g genomic DNA was extracted from cys-

ticerci using the phenol-chloroform extraction as described by 
Sambrook et al. [11]. The DNA was resuspended in 50 μl Tris-
EDTA (TE) buffer and stored at -20˚C. To amplify the cytb gene, 
PCR primers (forward: 5'-ATGGTTAGTTTATTACGTCGGA-3'; 
and reverse: 5'-TAAGAACTCTAAACACTTGACATAC-3') were 
designed by the program primer 5.0 using the mitochondrial 
genome sequence of T. pisiformis, which is available at the Na-
tional Center for Biotechnical Information (NCBI) database 
(GenBank no. NC013844). PCR reactions were carried out in 
a 50 μl reaction mixture containing 25 μl of PCR mixture (Tian-
gen, Beijing, China), 2 μl of each primer (forward and reverse), 
1 μl of template DNA (approximately 100 ng), and 20 μl ster-
ile water. The amplification conditions for cytb consisted of an 
initial denaturation step at 94˚C for 5 min, followed by 30 cy-
cles of denaturation at 94 C̊ for 55 sec, annealing at 54 C̊ for 55 
sec, elongation at 72˚C for 50 sec, and a final extension step at 
72˚C for 10 min. PCR products (50 μl) were separated by elec-
trophoresis on a 1.0% agarose gel and stained with ethidium 
bromide. Amplicons were cloned into a pMD19-t vector (TaKa-
Ra, Dalian, China) according to the manufacturer’s instruc-
tions. Purified PCR products and positive clones were se-
quenced 3 times in-house using an ABI PRISMTM 377XL DNA 
Sequencer (ABI, Foster city, USA) with universal forward and 
reverse primers, respectively.

Sequence analysis
The sequences of the cytb gene were confirmed by a compar-

ison with the published mitochondrial genome sequence of T. 

pisiformis. Multiple alignments were performed in ClustalX 1.83. 
Aligned sequences (excluding primer sequences) were trans-
formed to FASTA and MEGA files. The number of haplotypes, 
calculation of haplotype diversity (Hd), nucleotide diversity 
(π), gene flow (Nm), and neutrality tests (including Tajima's D, 
and Fu and Li's test) were performed using DnaSP 4.10.9 [12]. 
To obtain the conserved and variable sites, global FST value and 
AMOVA were analyzed using Arlequin v3.11 [13]. Network 4.0 
software [14] was used to analyze the MJ-network of haplotypes. 
The phylogenies were reconstructed using the neighbor-join-
ing (NJ) method in MEGA 4.0 [15]. Parameters for tree con-
struction included the Kimura-2-parameter index and 1,000 
bootstrap resampling. 

RESULTS

The partial sequence size of the cytb gene was 922 bp, which 
occupied 86.3% (922/1,068) of the whole length. The sequenc-
es of 53 isolates were submitted to GenBank under the acces-
sion numbers JN870153-JN870178 and JX535256-JX535282. 
The average base composition of cytb was 44.9% (T), 26.3% 
(A), 19.9% (G), and 8.9% (C), with AT-richness in the sequenc-
es. No insertions, deletions, or stop codons were detected. 
Twenty-four variable sites, including 17 parsimony informative 
sites and 7 singleton sites, were found in cytb. These included 
14 transitions (12 A-G and 2 T-C), and 10 transversions (3 A-T, 
2 A-C, 1 G-C, and 4 T-G). Twelve haplotypes were found in 53 
isolates, giving an Hd value of 0.578 and a π value of 0.00371. 
As observed in this study, Hap3 was the most common haplo-
type (found in 35 isolates, 66.0%), followed by Hap1 (YA2, 
GA1, GA2, CD1, and CD2) and Hap4 (AB2, LS2, CD3, and 
GY3). Nine haplotypes were found only in a single isolate, in-
cluding GY4 (Hap2), AB3 (Hap5), AB1 (Hap6), LS3 (Hap7), 
GY2 (Hap8), LS1 (Hap9), PZ3 (Hap10), LZ7 (Hap11), and 
AB6 (Hap12). 

The AMOVA showed that 98.4% genetic variation was de-
rived from intra-region, and 1.6% from inter-region. The glob-
al Nm and FST of genetic differentiation across 53 samples were 
1.46 and 0.0157, respectively. Analysis of the haplotype MJ-net-
work showed that Hap3 was the most prominent haplotype, 
and the other haplotypes centered on it (Fig. 2). No geograph-
ical clustering was observed from the NJ tree analysis (Fig. 3). 

Fig. 1. Eight collection sites of Taenia pisiformis in Sichuan Prov-
ince, China. The number in curly brackets is the amount of col-
lected worms from different regions.
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However, haplotype clustering was significant in the phyloge-
netic trees. The first cluster was Hap1 and Hap2, and the second 
was Hap3 to Hap12. The neutrality test showed that Tajima's 
D= -1.13902 (P>0.1), Fu and Li's D*= -0.52626 (P>0.1), Fu 
and Li's F*= -0.88276 (P>0.1) were not significantly different. 

DISCUSSION

In our study, the AT-richness of cytb exceeded 70%, which 
was similar to observations by Jia et al. [16] and Liu et al. [17]. 
They suggested an AT-bias in the mitochondrial genomes of T. 

taeniaeformis, T. multiceps, T. hydatigena, and T. pisiformis. The π 
value is an important index to measure the level of genetic di-
versity. In most animals, a π value of >0.01 is considered to 
indicate a comparatively large variation [18]. In this study, π 
value was lower than 0.01, suggesting that there was low ge-
netic variation of 53 isolates from 8 regions. According to the 
different allele frequency, the genetic differentiation index, FST, 
is often used to evaluate the proportion of genetic diversity 
[19]. Nm>1 is considered enough to resist the function of ge-
netic drift, and prevent the occurrence of genetic differentiation 
[20]. Nm value (1.46) and FST (0.01573) of global isolates dem-
onstrated low levels of genetic diversity. The 53 geographcial 
isolates may belong to a larger population in Sichuan Province. 
There was no evidence demonstrating a geographical clustering 
from the haplotype MJ-network and phylogeny tree. Phyloge-

netic analyses revealed that there was no correlation between 
phylogeny and geographical distribution. In our study, the val-
ues of Tajima's D, Fu and Li's D, and Fu and Li's F scores proved 
that the evolution of T. pisiformis followed a neutral mode. 

Barbosa et al. [21] used the wild rabbit (Oryctolagus cunicu-

lus) and a parasitic tapeworm (T. pisiformis) as an example to 
study phylogeographic triangulation, and argued that the phy-
logeography of a parasite that needs 2 hosts to complete its life 
cycle should reflect population history traits of both hosts. 

Fig. 3. Neighbor-joining phylogenetic tree constructed by the 
Kimura-2-parameter index and 1,000 bootstrap resampling using 
53 cytb sequences (922 bp) of T. pisiformis.

Fig. 2. Haplotype network for 8 regions of Taenia pisiformis. Circles 
and red numbers represent the frequency of haplotype distribu-
tions and the mutational site, respectively. The geographical distri-
bution of each haplotype was presented in curly brackets (Ya'an, 
YA; Chengdu, CD; Panzhihua, PZ; Leshan, LS; Guangyuan, GY; 
Luzhou, LZ; Guang'an, GA; Aba, AB).
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Many macroparasites do not actively disperse their popula-
tions but rely on the movement of their intermediate or final 
hosts [22,23]. Following the increasingly frequent trade of ca-
nines and rabbits over long distances, the exchange of genetic 
material appears more likely, which may cause the low genetic 
variation of T. pisiformis in Sichuan Province, China.

In conclusion, our results showed that low genetic variations 
were present in 53 isolates of T. pisiformis from Sichuan, China, 
which provided genetic evidence for future development of 
prevention and control measures. However, the relationship 
between T. pisiformis pathogenicity, drug resistance, and genetic 
structure requires further research to clarify the role of each. 
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