Caffe Bene, one of the most notable coffeehouse chain brands in Republic of Korea, gives us some thought-provoking issues in terms of sustainable success. Despite harsh competition among various coffeehouse brands, Caffe Bene has been accomplished astonishing outcomes in domestic market and now ranked 2nd place in sales among the global coffeehouse franchise in 2010 and 2011. These achievements were possible mainly because Caffe Bene adopted distinctive shop design, maintained aggressive marketing strategy, developed new menu, and combined the unique Korean culture with ordinary concept of café to make its place attractive. However, since Korean coffeehouse market is getting saturated and consumers are becoming savvy about coffee, Caffe Bene needs to find a new solution to overcome growth stagnation. Besides, many experts pointed out that irrational increase in the number of stores might hurt its business in the aspect of managing distribution channel and providing consistent services. Also, customers of Caffe Bene have shown that it has to complement its critical weaknesses: inferior coffee taste and relatively high price for a cup of coffee. Especially, some people view that the company is shifting its high rental fee, interior cost and PPL marketing cost to consumers by charging high price for coffee. To get over the problems, Caffe Bene is currently using C/S Consumer Management System though experts are questioning about the efficacy because of the conflict between purpose of the system and the headquarters' plan. Present CEO Kim also announced that the company will complete its logistics system in the latter half of 2012 to provide stores with more high quality coffee beans to improve taste of coffee. Thus, in this case, we describe how Caffe Bene succeeded in Korean market and enumerate its key success factors. Also, we specify the long-term goals of Caffe Bene and introduce the current policies and strategies to show how the company is working on to achieve its ultimate goal. By reading and analyzing this business case, students could get useful insights regarding franchise management and think about issues on competing in a saturated market. Also, it would be worthwhile to generate creative solutions for the problems that Caffe Bene is now facing to broaden the practical perspective.
In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.
Companies in modern society are increasingly recognizing sentiment classification as a crucial task, emphasizing the importance of accurately understanding consumer opinions opinions across various platforms such as social media, product reviews, and customer feedback for competitive success. Extensive research is being conducted on sentiment classification as it helps improve products or services by identifying the diverse opinions and emotions of consumers. In sentiment classification, fine-tuning with large-scale datasets and pre-trained language models is essential for enhancing performance. Recent advancements in artificial intelligence have led to high-performing sentiment classification models, with the ELECTRA model standing out due to its efficient learning methods and minimal computing resource requirements. Therefore, this paper proposes a method to enhance sentiment classification performance through efficient fine-tuning of various datasets using the KoELECTRA model, specifically trained for Korean.
In a global environment, airlines are striving to secure competitiveness and generate profits through customer satisfaction. The first thing to do in order to provide services to customers is the safety of the aircraft, and the basis for realizing safety is the continuous maintenance of maintenance quality. The degree of development of aviation technology is progressing unimaginably fast, but the overall environment of aviation mechanics working at the front line to maintain maintenance quality remains largely unchanged. This study aims to identify the level of education and training provided to aircraft maintenance engineers and safety culture, and to examine the effect of self-esteem on maintenance quality. Previous studies have been conducted on maintenance engineers' education and training, organizational performance, and job stress, but there has been a lack of studies on maintenance quality. Therefore, this study aims to identify the relationship between variables affecting maintenance quality and to suggest implications for improving maintenance quality through empirical analysis.
Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.
Journal of the Korean Society of Food Science and Nutrition
/
v.37
no.7
/
pp.942-952
/
2008
The purpose of this research was to evaluate the quality of take-out services at restaurants in Chungbuk Province. A questionnaire survey by 450 customers who had experience in take-out service at the restaurants was conducted and 378 completed questionnaires were available for statistical evaluation. Statistical analyses were made of raw data by SAS V8.2. The scale for analyzing the importance and performance of the service quality was composed of 5-point Likert scales. The main results of this study are as follow: The quality attributes of take-out service were rearranged into four factors in terms of food, sanitation, access and service. The importance score was higher than performance score. IPA showed that 'freshness of food material', 'cleanliness and hygiene in food', 'sanitation of facilities', 'neatness of employees' and 'price in food' was included in 'focus here' area. There was significantly positive correlation between factors such as food, sanitation, access, service and overall customer satisfaction (p<.001); between factors and repurchasing intentions (p<.001); and between customer satisfaction and repurchasing intentions (p<.001). According to multiple regression analysis, 26.27% of the variance in respondents' overall satisfaction score and 9.21% of the variance in respondents' repurchasing intention score could be explained by factors such as food, sanitation, access and service.
Purpose: This study was conducted to segment the delivery food market and to develop customized products and services. Methods: This study analyzed 636 responses collected from customers who ordered delivery food. Statistical analyses were conducted using the SPSS program (ver. 25.0) for frequency analysis, χ2-test, one-way analysis of variance, factor analysis, and cluster analysis. Results: Four factors were extracted by exploratory factor analysis (safety-orientation, convenience-orientation, taste-orientation, and economy-orientation) to explain the consumers' food-related lifestyles. The results of cluster analysis indicated that the 'low-interest group', 'convenience and economy-oriented group', and 'gourmet and economy-oriented group' should be regarded as the target segments. Characteristic analysis of each cluster showed that lowinterest group had higher rates of married (67.1%) and living with family (85.4%) than other clusters. The convenience and the economy-oriented group had higher rates of living alone (28.9%) than others. The gourmet and the economy-oriented group had a higher percentage of unmarried (62.0%) than the others. In addition, the average age of convenience and economy-oriented group (32.3 years) and gourmet and economy-oriented group (32.5 years) were significantly lower than the safety seeker (40.0 years) (p < 0.001). Difference analysis of the consumption practice according to the cluster, revealed significant differences in the order frequency (p < 0.001), main day to order (p < 0.05), source of information about delivery food (p < 0.001), order method (p < 0.001), and co-consumer (p < 0.01). In addition, the convenience and the economy-oriented group had significantly higher overall satisfaction than the others (p < 0.001). Conclusion: These findings suggest that customer segmentation based on a food-related lifestyle can be used to build a successful marketing strategy. Therefore, restaurant managers and delivery platform operators should consider developing products and services according to the segmentation to maximize customer satisfaction.
Recently, SME's Collaboration activities have become one of a vital factor for sustaining competitive edge. This is because of the rapidly changing and competitive market environment, and also to leverage performance by overcoming obstacles of having limited internal resources. Discussing about the effects and relationships of the firm's collaboration activities and its outputs are not new. However, as ICT and various technologies have been diffused into the traditional industries, boundaries and practice capabilities within the industries are becoming ambiguous. Thus contents of the products/services and their development methods are also go and come over the industries. Although many researchers suggested the relations of SME's collaboration activities and innovation performances, most of the previous literatures are focusing on broad perspectives of firm's environmental factors rather than considering various SME's idiosyncrasy factors such as their major product and customer types at once. Therefore, the purpose of this paper is to analyze how SME(Small Medium Enterprise)'s external collaboration activities by their idiosyncrasy act as an input to types of innovation performance. In order to analyze collaboration effects in detail, we defined factors that can represent the SME's business environment - Perceived importance of using external resources, Perceived importance of external partnership, Collaboration and Collaboration levels of Major Product types, Customer types and lastly the Firm Sizes. We have also specifically divided the performance of innovation types as product innovation and process innovation based on existing research. In this study, the empirical analysis is based on Probit Regression Model to observe the correlations with the impact of each SME's business environment and their activities. For the empirical data, 497 samples were collected which, this sample data was extracted from the 'Korean Open Innovation Survey' performed by ETRI(Korean Electronics Telecommunications Research Institute) in 2010. As a result, empirical test results indicated that the impact of collaboration varies depend on the innovation types (Product and Process Innovation). The Impact of the collaboration level for the product innovation tend to be more effective when SMEs are developing for a final product, targeting on for individual customers (B2C). But on the other hand, the analysis result of the Process innovation tend to be higher than the product innovation, when SMEs are developing raw materials for their partners or to other firms targeting on for manufacturing industries(B2B). Also perceived importance of using external resources has effected to both product and process innovation performance. But Perceived importance of external partnership was statistically insignificant. Interesting finding was that the service product has negative effects on for the process innovation performance. And Relationship between size of the firms and their external collaboration activities with their performance of the innovations indicated that the bigger firms(over 100 of employees) tend to have better for both product and process innovations. Finally, implications of the results can be suggested as performance of innovation can be varied depends on firm's unique business idiosyncrasy as well as levels of external collaboration activities. The Implication of this research can be considered for firms in selecting an appropriate strategy as well as for policy makers.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.15
no.6
/
pp.27-42
/
2020
Startup accelerators have emerged as new investment entities that help early startups, which are not easy to survive continuously due to lack of funds, commercialization capabilities, and experiences. As their positive performance on early startups and the ecosystem has been proven, the number of early startups which want to receive their investment is also increasing. However, they are vaguely preparing to attract accelerators' investment because they do not have any information on what factors the accelerators consider important. In addition, researches on startup accelerators are also at an early level, so there are no remarkable prior studies on factors that decide on investment. Therefore, this study aims to help startups prepare for investment attraction by looking at what factors are important for accelerators to invest, and to provide meaningful implications to academia. In the preceding study, we derived five upper level categories, 26 lower level accelerators' investment determinants through the qualitative meta-synthesis method, secondary data analysis, observation on US accelerators and in-depth interviews. In this study, we want to derive important implications by deriving priorities of the accelerators' investment determinants. Therefore, we used AHP that are evaluated as the suitable methodology for deriving importance and priority. The analysis results show that accelerators value market-related factors most. This means that startups that are subject to investment by accelerators are early-stage startups, and many companies have not fully developed their products or services. Therefore, market-related factors that can be evaluated objectively seem to be more important than products (or services) that are still ambiguous. Next, it was found that the factors related to the internal workforce of startups are more important. Since accelerators want to develop their businesses together with start-ups and team members through mentoring, ease of collaboration with them is very important, which seems to be important. The overall priority analysis results of the 26 investment determinants show that 'customer needs' and 'founders and team members' understanding of customers and markets' (0.62) are important and high priority factors. The results also show that startup accelerators consider the customer-centered perspective very important. And among the factors related to startups, the most prominent factor was the founder's openness and execution ability. Therefore, it can be confirmed that accelerators consider the ease of collaboration with these startups very important.
The change in the management environment of the logistics industry in the era of global competition is becoming an era in which customers choose companies. Differentiation from competitors through the provision of products and services suitable for customers As customers' choices change depending on their superiority, companies are constantly striving to receive or retain customers' choices. Ultimately, this competitive structure can be seen as the importance of long-term relationship building. Therefore, in this study, we examined how factors related to transaction characteristics performed by logistics companies for customer satisfaction in the transaction relationship between cargo companies and shippers affect performance and long-term transaction intentions. First, we derived the factors of logistics service, cost, logistics infrastructure, and company competency, which are transaction characteristics factors of a logistics company that must be specifically realized for customer satisfaction in transactions between logistics companies. Second, we analyzed how the transaction characteristics factors of a logistics company affect the company's performance, and finally, how the company's performance factors affect long-term transaction intentions. As a result of empirical analysis, there were no statistically significant results on the relationship between transaction characteristics and performance of logistics companies, which can be attributed to the small size of the logistics companies that were the sample. In other words, logistics companies that do not have sufficient capacity to provide services at low prices have no choice but to engage in constant bleeding competition. It can be seen that it reflects the characteristics of the industry. On the other hand, the relationship between corporate performance factors and long-term transaction intention was found to have a positive relationship. The higher the level of partnership with logistics companies and visible financial performance is, the higher the transaction will be in the future, and the more the transaction volume will be gradually increased. And even if it costs a little more, it can be seen that the intention to continue trading is greatly expressed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.