• Title/Summary/Keyword: curves

Search Result 8,494, Processing Time 0.033 seconds

ON THE SECURITY OF CERTAIN HYPERELLIPTIC CURVES

  • KIM, INSUK;JUN, SUNGTAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • We compute the order of jacobian groups of hyperelliptic curves on a finite field of characteristic 3 and we determine which curves are secure against known attacks.

  • PDF

Drinfeld modules with bad reduction over complete local rings

  • Bae, Sung-Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.349-357
    • /
    • 1995
  • In the theory of elliptic curves over a complete field with bad reduction (i.e. with nonintegral j-invariant) Tate elliptic curves play an important role. Likewise, in the theory of Drinfeld modules, Tate-Drinfeld modules replace Tate elliptic curves.

  • PDF

NULL CURVES IN A SEMI-RIEMANNIAN MANIFOLD OF INDEX 2

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.231-253
    • /
    • 2007
  • The purpose of this paper is to study the geometry of null curves in a semi-Riemannian manifold (M, g) of index 2. We show that it is possible to construct new Frenet equations of two types of null curves in M.

  • PDF

ISOMORPHISM CLASSES OF ELLIPTIC CURVES OVER FINITE FIELDS WITH CHARACTERISTIC 3

  • Jeong, Eunkyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.299-307
    • /
    • 2009
  • We count the isomorphism classes of elliptic curves over finite fields $\mathbb{F}_{3^{n}}$ and list a representative of each isomorphism class. Also we give the number of rational points for each supersingular elliptic curve over $\mathbb{F}_{3^{n}}$.

  • PDF

NATURAL FRENET EQUATIONS OF NULL CURVES

  • JIN, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.211-221
    • /
    • 2005
  • The purpose of this paper is to study the geometry of null curves in a Lorentzian manifold (M, g). We show that it is possible to construct new type of Frenet equations of null curves in M, supported by two examples.

  • PDF

Exceptional bundles of higher rank and rational curves

  • Kim, Hoil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.149-156
    • /
    • 1998
  • We relate the existence of rational curves with the existence of rigid bundles of any even rank on Enriques surfaces and compare with the case of K3 surfaces.

  • PDF