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ISOMORPHISM CLASSES OF ELLIPTIC CURVES
OVER FINITE FIELDS WITH CHARACTERISTIC 3

Eunkyung Jeong*

Abstract. We count the isomorphism classes of elliptic curves
over finite fields F3n and list a representative of each isomorphism
class. Also we give the number of rational points for each supersin-
gular elliptic curve over F3n .

1. Introduction

Elliptic curves have been intensively studied in algebraic geometry
and number theory. Starting in about 1985, the theory of elliptic curves
over finite fields has been applied to various problems; factoring integers,
primality proving and construction of public key cryptosystems. One of
the advantages using elliptic curve cryptosystems is the greater flexibility
in choosing the group. That is for each prime power q there is only one
multiplicative group F∗q , but there are many elliptic curve groups.

It may be useful to classify the isomorphism classes of elliptic curves
over finite fields, in order to know how many essentially different choices
of curves are. And this classification is used to produce nonisomorphic
elliptic curves, which may be useful for a cryptographic purpose. In [4]
isomorphism classes of elliptic curves over Fpn , p 6= 2, 3 and F2n were
studied.

In this paper we count the isomorphism classes of elliptic curves de-
fined over finite fields F3n and list a representative of each isomorphism
class. Moreover, we give the order and the group structure of supersin-
gular elliptic curves over F3n . This fields are getting more interest in a
cryptographic purpose (see, for instance, [1] and [2]).
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This paper is organized as follows;

In section 2 the necessary definitions and notations are introduced.
In section 3 the exact number and a set of representatives of the isomor-
phism classes of elliptic curves over F3n are produced. In section 4 we
give the number of points and the group type of supersingular elliptic
curves over finite fields with characteristic 3.

2. Elliptic curves

In this section, we recall the basic definitions and properties about
the elliptic curves. We follow notations given in [4].

If K is a field, let K̄ denote its algebraic closure. A Weierstrass
equation is a homogeneous equation of degree 3 of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

where ai ∈ K. The Weierstrass equation is said to be smooth or non-
singular if for all projective points P (X, Y, Z) ∈ P 2(K̄) satisfying

F (X,Y, Z) = Y 2Z+a1XY Z+a3Y Z2−X3−a2X
2Z−a4XZ2−a6Z

3 = 0,

at least one of the three partial derivatives ∂F
∂X , ∂F

∂Y , ∂F
∂Z is non-zero at

P . An elliptic curve E is the set of all solutions in P 2(K̄) of a smooth
Weierstrass equation. There is exactly one point in E with Z-coordinate
equal to 0, namely (0, 1, 0). We call this point the point at infinity and
denote it by O.

For convenience, we will write the Weierstrass equation for an elliptic
curve using non-homogeneous (affine) coordinates x = X/Z, y = Y/Z,

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

An elliptic curve E is then the set of solutions to equation (2.1) in
the affine plane A2(K̄) = K̄×K̄, together with the extra point at infinity
O. If a1, a2, a3, a4, a6 ∈ K, the E is said to be defined over K, and we
denote by E/K. If E is defined over K, then the set of K-rational points
of E, denoted E(K), is the set of points both of whose coordinates lie in
K, together with the point O.

The following lemma will be needed for theorems in the later sections.

Lemma 2.1. [3] The trinomial

xp − x− a, a ∈ Fq,
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where q is a prime power pn, has a solution in Fq if and only if Tr(a) = 0.

Here, Tr(α) = α + αp + αp2
+ · · ·+ αpn−1

.

3. Isomorphism classes of elliptic curves over Fq, q = 3n

Let E be an elliptic curve over a field K. We can write E as the
following nonsingular Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K.
Two elliptic curves are said to be isomorphic if they are isomorphic

as projective varieties. Briefly, two projective varieties V1, V2 defined
over a field K are isomorphic over K if there exist morphisms φ : V1 −→
V2, ψ : V2 −→ V1(φ, ψ defined over K), such that ψ ◦ φ and φ ◦ ψ are
the identity maps on V1, V2 respectively. The following result relates
the notion of isomorphism of elliptic curves to the coefficients of the
Weierstrass equations that define the curves [4].

Theorem 3.1. [4] Two elliptic curves E1/K and E2/K given by the
equations

E1 : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

E2 : y2 + ā1xy + ā3y = x3 + ā2x
2 + ā4x + ā6

are isomorphic over K if and only if there exists an admissible change of
variables u, r, s, t ∈ K, u 6= 0, such that the change of variables

(x, y) → (u2x + r, u3y + u2sx + t)

transforms equation E1 to equation E2. The relationship of isomorphism
is an equivalence relation.

Theorem 3.2. [4] Two elliptic curves E1/K and E2/K are isomorphic
over K if and only if there exist u, r, s, t ∈ K, u 6= 0, that satisfy the
following equations;




uā1 = a1 + 2s
u2ā2 = a2 − sa1 + 3r − s2

u3ā3 = a3 + ra1 + 2t
u4ā4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st
u6ā6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1.
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Proposition 3.3. [6] Let E/Fq, q = 3n be a curve given by a Weier-
strass equation. Then there is an admissible change of variables

(x, y) 7→ (u2x + r, u3y + u2sx + t) with u ∈ F∗q and r, s, t ∈ Fq

such that E/Fq has a Weierstrass equation of the indicated form.{
y2 = x3 + a2x

2 + a6, ∆(E) = −a3
2a6, j(E) = −a3

2/a6 if j(E) 6= 0,
y2 = x3 + a4x + a6, ∆(E) = −a3

4 if j(E) = 0,
where ∆(E) denotes the discriminant of E.

The elliptic curve E is said to be supersingular if p divides t, where
]E(Fq) = q+1− t, q = pn. Then it is well-known that E is supersingular
if and only if j-invariant j(E) = 0 when q = 3n.

Theorem 3.4. (Nonsupersingular case) There are 2(q − 1) isomor-
phism classes of non-supersingular elliptic curves over Fq, q = 3n.

Proof. Let E1, E2 be non-supersingular elliptic curves defined over
F3n and given by the equations

E1 : y2 = x3 + a2x
2 + a6, (a2 6= 0, a6 6= 0),

E2 : y2 = x3 + ā2x
2 + ā6, (ā2 6= 0, ā6 6= 0).

Then the only admissible change of variables which transforms E1 into
E2 is

(x, y) → (u2x, u3y), u ∈ F∗q ,
such that u2ā2 = a2 and u6ā6 = a6. When u2 = 1, the above trans-
formation gives the automorphism. So there are (q − 1)2/((q − 1)/2) =
2(q − 1) isomorphism classes of non-supersingular elliptic curves over
Fq, q = 3n.

Theorem 3.5. (Supersingular case) There are 6 isomorphism classes
of supersingular elliptic curves over F3n , when n is even. There are 4
isomorphism classes of supersingular elliptic curves, when n is odd.

Proof. Let E be a supersingular elliptic curve over F3n given by the
following equation.

E : y2 = x3 + a4x + a6, a4 6= 0.

The admissible change of variables in the equation E which transforms
into itself is

(x, y) → (u2x + r, u3y),
where

u4 = 1 and u6a6 = a6 + a4r + r3.



Isomorphism classes of elliptic curves over F3n 303

Substitute u4 = 1 into the second equation above, then we obtain

(3.1) r3 + a4r + a6(1− u2) = 0.

We split this into the following cases;
If
√−a4 /∈ F∗q , then the map r 7→ r3+a4r is bijective. Hence the equation

(3.1) has unique solution, say ru, and the automorphism group is

(x, y) → (u2x + ru, u3y).

If
√−a4 ∈ F∗q , then there exists r0 ∈ F∗q such that r2

0 = −a4, and the
equation (3.1) has a solution in Fq iff the equation

(3.2) r3 − r = a6(u2 − 1)/r3
0

has a solution in Fq. If Tr(a6(u2−1)/r3
0) 6= 0, then the equation (3.2) has

no solutions by Lemma 2.2. If Tr(a6(u2− 1)/r3
0) = 0, then the equation

(3.2) has three solutions; If r̄u is one of them, the other solutions are
r̄u±1. Note that since u2 = ±1 ∈ F3, the condition Tr(a6(u2−1)/r3

0) = 0
iff u2Tr(a6/r3

0)− Tr(a6/r3
0) = 0.

We further split this into two cases according to n is even or odd.
When n is even, then the solutions of the equation u4 = 1 are {±1,±ζ|ζ2

= −1, ζ ∈ Fq}. If Tr(a6/r3
0) = 0, then the automorphism group is

(x, y) 7→ (u2x + r, u3y), u4 = 1, r ∈ {r0r̄u, r0(r̄u ± 1)}.
If Tr(a6/r3

0) 6= 0, then the automorphism group is

(x, y) 7→ (x + r, uy), u2 = 1, r ∈ {0,±r0}.
When n is odd, the solutions to the equation u4 = 1 are {±1}. So the
automorphism group is

(x, y) 7→ (x + r, uy), u2 = 1, r ∈ {0, r0,−r0}.
In conclusion, if n is even, the number of supersingular elliptic curves is

q(q − 1)/2
q(q − 1)/4

+
q(q − 1)/6
q(q − 1)/12

+
q(q − 1)/3
q(q − 1)/6

= 6,

and if n is odd, the number of supersingular elliptic curves is

q(q − 1)/2
q(q − 1)/2

+
q(q − 1)/2
q(q − 1)/6

= 4.

Theorem 3.6. 1.(Nonsupersingular case) A set of representatives of
the isomorphism classes of non-supersingular elliptic curves over F3n is

{y2 = x3 + a2x
2 + a6| a2 ∈ {1, α}, a6 ∈ F∗3n},
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where α is a quadratic nonresidue in F∗3n

2. (Supersingular case) A representative from each isomorphism class of
supersingular elliptic curves over F3n is





y2 = x3 − βx

y2 = x3 − β3x

y2 = x3 − x

y2 = x3 − γx

y2 = x3 − x + δ

y2 = x3 − γx + δ

if n is even,

where
√

β /∈ F∗3n ,
√

γ ∈ F∗3n , 4
√

γ /∈ F∗3n and Tr(δ) 6= 0.
And





y2 = x3 + x

y2 = x3 − x

y2 = x3 − x + λ

y2 = x3 − x + µ

if n is odd,

where Tr(λ) = 1, T r(µ) = −1.

4. Number of points

We determine the number of rational points ]E(F3n), where E is a
supersingular curve over F3n . We summarize the needed Theorems to
count the order of supersingular elliptic curves and to find the group
structure.

Theorem 4.1. (Weil Theorem) Let E be an elliptic curve defined
over Fq, and let t = q + 1− ]E(Fq). Then ]E(Fqk) = qk + 1− αk − βk,
where α, β are complex numbers determined from the factorization of
1− tT + qT 2 = (1− αT )(1− βT ).

Theorem 4.2. [7] Let p be a prime and q = pm. Let t be and inte-
ger with |t| ≤ 2

√
q and Nq(t) be the number of isomorphism classes of

elliptic curves over Fq such that ]E(Fq) = q + 1− t. Then
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Nq(t) =





H(t2 − 4q), if t2 < 4q, and p - t
H(−4p), if t = 0 and m odd.

1, if t2 = 2q, and p = 2,m odd.

1, if t2 = 3q, and p = 3,m odd.
1
12(p + 6− 4(−3

p )− 3(−4
p )), if t2 = 4q, and m even.

1− (−3
p ), if t2 = q, and m even.

1− (−4
p ), if t = 0, and m even.

0, otherwise

Here, H(∆) denotes the Kronecker class number of ∆, and is the number
of SL2(Z)-orbits of positive definite binary quadratic forms of discrimi-
nant ∆, where ∆ is a negative integer congruent to 0 or 1 modulo 4.

Theorem 4.3. [5] Let ]E(Fq) = q + 1− t.

1. If t2 = q, 2q, or 3q, then E(Fq) is cyclic.
2. If t2 = 4q, then either E(Fq) ∼= Z√q−1⊕Z√q−1 or E(Fq) ∼= Z√q+1⊕
Z√q+1, depending on whether t = 2

√
q or t = −2

√
q respectively.

3. If t = 0 and q 6≡ 3 (mod 4), then E(Fq) is cyclic. If t = 0 and
q ≡ 3 (mod 4), then E(Fq) is cyclic or E(Fq) ∼= Z(q+1)/2 ⊕ Z2.

The curve E can be also viewed as an elliptic curve over any extension
field Fqm . One can compute ]E(Fqm), for m ≥ 2, from ]E(Fq) using the
Weil theorem. The group type of these curves may be determined by
using Theorem 4.3.

Theorem 4.4. The number of points and the group structure of
supersingular elliptic curves in Theorem 3.6 are given following tables;

No Curve E n ]E(F3n) Group
Type

1 y2 = x3 − βx even q + 1 cyclic
2 y2 = x3 − β3x even q + 1 cyclic
3 y2 = x3 − x n ≡ 0 (mod 4) q + 1− 2

√
q Z√q−1 ⊕ Z√q−1

n ≡ 2 (mod 4) q + 1 + 2
√

q Z√q+1 ⊕ Z√q+1

4 y2 = x3 − γx n ≡ 0 (mod 4) q + 1 + 2
√

q Z√q+1 ⊕ Z√q+1

n ≡ 2 (mod 4) q + 1− 2
√

q Z√q−1 ⊕ Z√q−1

5 y2 = x3 − x + δ even q + 1±√q cyclic
6 y2 = x3 − γx + δ even q + 1∓√q cyclic

Table 1. Orders of supersingular elliptic curves over F3n , where n is
even
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No Curve E n ]E(F3n) Group
Type

1 y2 = x3 + x odd q + 1 cyclic
2 y2 = x3 − x odd q + 1 Z(q+1)/2 ⊕ Z2

3 y2 = x3 − x + λ odd q + 1±√3q cyclic
4 y2 = x3 − x + µ odd q + 1∓√3q cyclic

Table 2. Orders of supersingular elliptic curves over F3n , where n is
odd

Proof. When n be even, let ]Ei = ]Ei(Fq) = q + 1− ti, for 1 ≤ i ≤ 6,
where q = 3n and the curves Ei are those of Theorem 3.6 (when n is
even). We first observe that

{x3 − βx|x ∈ Fq} = {x3 − β3x|x ∈ Fq} = Fq,

since β is a quadratic nonresidue in Fq. Hence t1 = t2 = 0. Since the
coefficients of the equation E3 are in F3, we can apply the Weil Theorem
to determine ]E3 and we get t3 = 2

√
q or −2

√
q according to whether

n ≡ 2 or 0 (mod 4) respectively.
By Theorem 4.2, we obtain that the 6 values of ti are 0, 0,±√q and
±√2q (not necessarily in that order). We find E4 has four 2-torsion
points since γ is a quadratic residue in Fq. Hence E4(Fq) cannot be
cyclic, so t4 = ±2

√
q.

Therefore t5 = ±√q and t6 = −t5.
When n is odd, there are 4 isomorphism classes of supersingular

curves over F3n . Let ]Ei = ]Ei(Fq) = q + 1 − ti, for 1 ≤ i ≤ 4, where
q = 3n and the curves Ei are those of Theorem 3.6 (when n is odd).
We determine the order of curves Ei(= q + 1), i = 1, 2 over F3n from
]E(F3)(=4) using the Weil theorem.
Since there are two(four) 2-torsion points in the curve E1(E2), the group
structure is cyclic (Z(q+1)/2 ⊕ Z2).
By Theorem 4.2, we obtain that the 4 values of ti are 0, 0,

√
3q and −√3q

(not necessarily in that order). Since t1 = t2 = 0, we get t3 = ±√3q
and t4 = −t3.

If n 6≡ 0 (mod 3), then Tr(1) 6= 0 and Tr(−1) 6= 0. So we can take
λ = 1, µ = −1 or λ = −1, µ = 1 depending on n ≡ 1 (mod 3) or n ≡ 2
(mod 3) respectively in E3, E4 when n is odd. The order of the curve
y2 = x3 − x + 1 is q + 1 +

√
3q if n ≡ ±1 (mod 12) and q + 1 −√3q if

n ≡ ±5 (mod 12). The order of the curve y2 = x3−x− 1 is q +1−√3q
if n ≡ ±1 (mod 12) and q + 1 +

√
3q if n ≡ ±5 (mod 12).
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