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DRINFELD MODULES WITH BAD REDUCTION
OVER COMPLETE LOCAL RINGS

SUNGHAN BAE

0. Introduction

In the theory of elliptic curves over a complete field with bad reduc-
tion (i.e. with nonintegral j-invariant) Tate elliptic curves play an im-
portant role. Likewise, in the theory of Drinfeld modules, Tate-Drinfeld
modules replace Tate elliptic curves.

In this note we define the Hasse invariant of a rank 2 Drinfeld module
on F,[T] defined over a field I{'. As in the classical theory of elliptic
curves, the j-invariant and the Hasse invariant together determine a
K-isomorphism class of Drinfeld modules of rank 2. Using the Fourier
expansions of g, A, and j we obtain a criterion for a Drinfeld module
to be K-isomorphic to a Tate-Drinfeld module (Theorem 1.2). Then
we prove an Isogeny Theorem for Drinfeld modules with non-integral ;-
invariants (Theorem 2.2). Finally we investigate the torsion points of
a Tate-Drinfeld module. Using this information we obtain an analogue
of the Theorem of Kodaira-Neron (Theorem 3.1) and a proof of an
analogue of the Neron-Ogg-Shafarevich criterion (Theorem 3.2).

1. Tate-Drinfeld Modules

Let A = F,[T] and p be the Carlitz module. Throughout the paper
K denote a complete field with respect to a discrete valuation v, R
its ring of integers, and k the residue field. By a Drinfeld module we
always mean a Drinfeld module of rank two. Let ¢(t) and A(¢) be the
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standard modular forms of weight ¢ — 1 and ¢ — 1, respectively. Then
they are the power series in s = t97!. Let §(s) and A(s) be the power
series given by

T =g(t), AT = A1)

Now for an element s of I with | s [< 1, le ¢* be the Drinfeld module
given by i
% =Tr% + §(s)r + A(s)7
We call ¢* the Tate-Drinfeld module associated to s and call s the period

of the Tate-Drinfeld module ¢°. It is well-known that the j-invariant,
7, of ¢* is of the form

() =)

where f is a power series with coefficients in A. Equivalently,

5=%+h(-]17)

where h is a power series with coefficients in A and of height at least 2.
In particular, | 7 |> 1.
Let ¢ be an element of K¢ with 17! = 5. Define e,(u) by,

erf(u) = u- ae}:‘[{o}(l - ;)-a(%_—l—)>

It is easy to see that e;(u) is defined over I\', and so we write it by e,(u).
Then we have the following commutative diagram with exact rows (cf:
(1] for details);

0 . D, . i % L0
S
0 , D, R G ¢ , 0
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where K = K(t) and D, = {pa(t~!) : a € A}. Here D, plays the
role of an A-lattice in ' with the A-module structure via p.

We say that s = t97! and s’ = #'¢"! in K™* are commensurable if
there exist a and b in A such that p,(t™') = ps(¢’~1). As with the
usual theory of Drinfeld modules, we have a natural bijection (cf; 4]
Proposition 3.8)

Hom(4*, 6% ) ~ {pa : pa(Dy) C Dy}

Thus ¢* and ¢* are isogenous if and only if s and s are commensurable.
The morphism f, of Hom(¢*,¢* ) associated to p, is given by

fa(u) = au - H (1 - es?a))’

w€ps DY/ De—{0)

where p71(Dy) = {o € K* : p,(«) € Dy}. Since pq,e,, and ey are
defined over K, §, is also defined over K. Since f, 0 €5 and ey 0§, both
have simple zeros at the pointsof p;!(D, ), we have

fa Oy = €g O fu

by comparing the coefficients of the starting terms.

PROPOSITION 1.1. Assume that p,(t™1) = py(t'™1). Let f, (resp.
f,) be the element of Hom(o!.¢') (resp. Hown(¢',¢')) associated to
pa (resp. ps). Then we have

(1) ﬁ) © ffl = (,7’5;‘1,
(ii) faofl = d5s

(111) deg fa — d(:g f;‘ _ q(legu«)—dey b.

Proof. (i) and (ii) are trivial from the conssruction. Let A, be the
kernel of p, in K*¢. Then
Kerfo (K*)= A, & es(;p;"l{ Dy))
~ A, & p; ' (Dv)/ Dy
~ A, & Dy /pat Dy)
~A, ®BDyp/pp{Dyp).
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Hence we get (iii).
For a Drinfeld module ¢ over K given by
¢ =T1° + g7 4+ AT?,

the Hasse invariant of ¢ is defined to be the class of ¢ mod (K*)?~! for
J#0. Forj =0, A mod I *9° =1 will be called the Hasse invariant of .
Then the j-invariant and the Hasse invariant together determine a -
isomorphism class of Drinfeld modules over K as in the theory of elliptic
curves. These notions are related with the Tate-Drinfeld modules in the
following way (cf: [5], VIIIa);

THEOREM 1.2. A Drinfeld module ¢ over K is K -isomorphic to a
Tate-Drinfeld modue over K if and only if the followings are true;
i |y>1

(i) The Hasse invariant is trivial.

Proof. Assume that ¢ is Ii-isomorphic to a Tate-Drinfeld module ¢*
with | s [< 1. Then (i) is trivial from the s-expansion of j. (ii) follows
from the s-expansion of §(s) and the trivial case of the Hensel’s lemma
for complete local ring for the equation X971 — g(s) == 0. Now assume
(1) and (ii). By (i), | % < 1, and so | s |=| -;— + h(-;-) |< 1. Since
g(s) € K*971 4! and ¢ have the same j-invariant and Hasse invariant,
they are K-isomorphic.

REMARK. For a Drinfeld module ¢ over I with nonintegral j-invari
ant, there exists a finite separable extension L of K so that ¢ is L-
isomorphic to a Tate-Drinfeld module over K. In fact, we can take L
to be the field K(g?fT ).

2. Drinfeld modules with non-Integral j-invariants

Let ¢ be a Drinfeld module with | j |> 1. Put L = K(g?—i_l ).
We assume that every algebraic extension of I is contained in a fixed
algebraic closure K¢ of I{. Over L, ¢ is isomorphic to a Tate-Drinfeld
module ¢* for some s in K, that is, there is an element € in L such that

¢ =¢€-¢-€e L
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We shall call s the period of ¢. Then it is clear tat e?~! € K. Let é, be
the Tate-Drinfeld map of ¢* over L. Put

€, =€ 1. é,.
Then we see easily that
Pa 0 €y = €50 pq.
Let o be an element of Gal(L/K). Since €, is defined over K, we have
es(0(2)) = o - oles(x))

= o9

where p, = =~ € F;. Since ¢! = j(s)/g and §(s) € (K*)?"!, we
have

o,
(*) fo =0(g7T)/geT.
LEMMA 2.1. Let ¢' be a Drinfeld module with period s'. Suppose
that po(D;) C Dy. Let u, be the isogeny from ¢ to ¢' associated to
the isogeny f, from ¢* to ¢* . Then we have

ual(es(@)) = es(pa(z)).
Proo. This follows easily from the fact that u, 0 e™! = ¢'~! 0§, and
fo 0 €y = €y 0 pg.
Now we will prove the following Isogeny Theorem:;

THEOREM 2.2. Let ¢ be a Drinfeld module over K with non-integral
J-invariant j. Let s be its period and g mod,(K *)?~1 its Hasse invariant.
Then a Drinfeld module ¢' over K is K -isogenous to ¢ if and ony if its
period s' is commensurable with s and its Hasse invariant is the same

as that of .

Proof. Let s (resp. s') be the period of ¢ (resp. ¢') and t (resp.
t') the (¢ — 1)st root of s (resp. s'). Suppose first that the Hasse
invariant of ¢ is trivial. Then ¢ is K -isomorphic to ¢°. Let u be the
K-isogeny from ¢' to ¢. Since ¢° and ¢° are isogenous, s and s’ are
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commensurable. Let § be the isogeny from #* to ¢° associated to u.
Then f must be of the form f,, so f is defined over K. Now from the

commutative diagram
§ —

g I
) f
¢ — &7,
¢’ must be an element of I because u, €, and f are defined over K.
Therefore ¢' has trivial Hasse invariant. The converse is trivial in this
case.

Now assume that ¢ mod (L*)?7! is not trivial. Let L = K{ )
and u be a K-isogeny from ¢' to ¢. The periods do not depend on
the extension field of K, s and s' must be commensurable. Viewing u
as an L-isogeny, ¢ mod(L*){™! is trivial by the previous discussion.
Thus we can conclude that I\'(ng—l) = K(g'v—i—‘ ). Hence gg' € ('*)17!
by Kummer theory. Conversely, assume that pa(t™) = pp(t'"1) and

g =g mod(I*)77 1. Let u be the isogeny over L associated to the

isogeny f, from ¢° to % . Let p, = f-(:‘—) and p! = ";) for o €

Gal(L/K). Then from (*), ptp = p,, since g = ¢’ mod (K*)971. Since
e,(0(2)) = py - oles(1)), we see that

.
g1

w(o(es(r))) = w(pgt - es(o(a)

Hence u 0 ¢ = o o u, which implies that u is defined over I

3. Torsion Points
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From the construction of e,(u), it is clear that e,(u) lies in R[[u]]. Let
t~* be any element of ¢ such that p,(t7*) == ¢t~ and A, a primitive
a-th root of p. Put

Wa,8 = palAd) + pa(t7*), a,p € A/(a).

Then the a-torsion points of ¢' are

es("‘)a,ﬂ) = ¢;(€s(/\a)) + ¢?i(€s(t—a))a ()(’/3 € A/((l)

Since e4(u) lies in R[[u]], the nonintegral torsion points come from
da(es(t™*)). But v(¢) > 0 implies thatv(¢7%) << 0, and so

—o(t) = vpalt™)) = ¢4 "0 (t ™),

Since v(t) is fixed, deg @ must be bounded. Therefore one can conclude
that the set

Torg:(N)/Tory (R)
1s finite.

A Drinfeld module ¢ over A is said to be minimal if ¢ is defined
over R and v(A) is minimal among the Drinfeld modules over R which
are K-isomorphic to ¢. Let ¢ be a minimal Drinfeld module over IV
with nonintegral j-invariant j. From the remark at the end of the first
section, we can find a finite separable extension L of K with the ring of
integers .S so that ¢ is L-isomorphic to a Tate-Drinfeld module ¢* over
L, that is, there exists ¢ € L such that

¢*=c-¢p-c,

Since ¢ is minimal, 0 < vy(c) < €, where ¢ is the ramification de-

gree of L over K. Then the multiplication by ¢ induces an injective
homomorphism

K/R —— LJS.
Thus
Tor(K)/Torg(R) ——s Torgs(L)/Torgs(S)
is injective. Since we know that Torg:(L)/Tor,:(S) is finite, w see that
Torg(K)/Torg(R) is finite. It is shown in [2] that if a minimal Drinfeld

module ¢ has an integral j-invariant, then Tory(K ) = Tory(R). Hence
we obtain the following analogue of the Theorem of Kodaira-Neron.
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THEOREM 3.1. For a minimal Drinfeld module ¢ of rank 2 over K,
Tory(K)/Toryg(R) is finite.

Now we can prove the following analogue of the criterion of Neron-
Ogg- Shafarevich for a Drinfeld module to have good reduction, follow-
ing the method in [7]. This theorem was proved by Takahash in (8] in
a different way.

THEOREM 3.2. Let ¢ be a minimal Drinfeld module. Let p be an
irreducible polynomial in A prime to the divisorial characteristic of the
reduced Drinfeld module ¢ over the residue field k. Then ¢ has good
reduction over K if and only if Tory(p®] is unramified as a Galois
module.

Proof. The ’only if’ part is trivial. Assume that Torg[p°°] is unram-
ified. Let K™ be the maximal unramified extension of . Choose n so
that

gm eI > ¢ | Toro(IX™")/Tore(R"") | .

Since Torg[p™] C Torg(L™"), Torgy(IK™") contains a submodule iso-
morphic to (A/p™)?. But Tors(L™")/Tors(R™ ) has order strictly less
than ¢™%9°, we see that Torgs(R"") contains a submodule isomorphic
to (A/p)?, from the exact sequence

nr

0 —— Torg(R"") —— Tory(K

——— Tory(K"")/Tors(R*) —— 0.
We know that Torg(m"™") has no nontrivial p-torsion ([2], Proposi-

tion 1.3). Thus Tor(k*) must have a submodule isomorphic to (.4/p)?,
by the exact sequence

0 —— Torg(m™) ——— Torg(R") ——— Tory(k).

Now suppose that ¢ has bad reduction over K®". Then ¢ has rank
at most 1. Thus Torg(k®°) cannot contain a submodule of the form

(A/p)%. Hence ¢ has good reduction over K", Since K""/K is un-
ramified, ¢ must have good reduction over K.
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