• Title/Summary/Keyword: curve approximation

Search Result 175, Processing Time 0.027 seconds

EXPLICIT ERROR BOUND FOR QUADRATIC SPLINE APPROXIMATION OF CUBIC SPLINE

  • Kim, Yeon-Soo;Ahn, Young-Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.257-265
    • /
    • 2009
  • In this paper we find an explicit form of upper bound of Hausdorff distance between given cubic spline curve and its quadratic spline approximation. As an application the approximation of offset curve of cubic spline curve is presented using our explicit error analysis. The offset curve of quadratic spline curve is exact rational spline curve of degree six, which is also an approximation of the offset curve of cubic spline curve.

  • PDF

GEOMETRIC CONIC SPLINE APPROXIMATION IN CAGD

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.331-347
    • /
    • 2002
  • We characterize the best geometric conic approximation to regular plane curve and verify its uniqueness. Our characterization for the best geometric conic approximation can be applied to degree reduction, offset curve approximation or convolution curve approximation which are very frequently occurred in CAGD (Computer Aided Geometric Design). We also present the numerical results for these applications.

HAUSDORFF DISTANCE BETWEEN THE OFFSET CURVE OF QUADRATIC BEZIER CURVE AND ITS QUADRATIC APPROXIMATION

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.641-648
    • /
    • 2007
  • In this paper, we present the exact Hausdorff distance between the offset curve of quadratic $B\'{e}zier$ curve and its quadratic $GC^1$ approximation. To illustrate the formula for the Hausdorff distance, we give an example of the quadratic $GC^1$ approximation of the offset curve of a quadratic $B\'{e}zier$ curve.

Comparison of Offset Approximation Methods of Conics with Explicit Error Bounds

  • Bae, Sung Chul;Ahn, Young Joon
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.10-15
    • /
    • 2016
  • In this paper the approximation methods of offset curve of conic with explicit error bound are considered. The quadratic approximation of conic(QAC) method, the method based on quadratic circle approximation(BQC) and the Pythagorean hodograph cubic(PHC) approximation have the explicit error bound for approximation of offset curve of conic. We present the explicit upper bound of the Hausdorff distance between the offset curve of conic and its PHC approximation. Also we show that the PHC approximation of any symmetric conic is closer to the line passing through both endpoints of the conic than the QAC.

B-spline Curve Approximation Based on Adaptive Selection of Dominant Points (특징점들의 적응적 선택에 근거한 B-spline 곡선근사)

  • Lee J.H.;Park H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • This paper addresses B-spline curve approximation of a set of ordered points to a specified toterance. The important issue in this problem is to reduce the number of control points while keeping the desired accuracy in the resulting B-spline curve. In this paper we propose a new method for error-bounded B-spline curve approximation based on adaptive selection of dominant points. The method first selects from the given points initial dominant points that govern the overall shape of the point set. It then computes a knot vector using the dominant points and performs B-spline curve fitting to all the given points. If the fitted B-spline curve cannot approximate the points within the tolerance, the method selects more points as dominant points and repeats the curve fitting process. The knots are determined in each step by averaging the parameters of the dominant points. The resulting curve is a piecewise B-spline curve of order (degree+1) p with $C^{(p-2)}$ continuity at each knot. The shape index of a point set is introduced to facilitate the dominant point selection during the iterative curve fitting process. Compared with previous methods for error-bounded B-spline curve approximation, the proposed method requires much less control points to approximate the given point set with the desired shape fidelity. Some experimental results demonstrate its usefulness and quality.

APPROXIMATION ORDER OF C3 QUARTIC B-SPLINE APPROXIMATION OF CIRCULAR ARC

  • BAE, SUNG CHUL;AHN, YOUNG JOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.151-161
    • /
    • 2016
  • In this paper, we present a $C^3$ quartic B-spline approximation of circular arcs. The Hausdorff distance between the $C^3$ quartic B-spline curve and the circular arc is obtained in closed form. Using this error analysis, we show that the approximation order of our approximation method is six. For a given circular arc and error tolerance we find the $C^3$ quartic B-spline curve having the minimum number of control points within the tolerance. The algorithm yielding the $C^3$ quartic B-spline approximation of a circular arc is also presented.

ERROR ANALYSIS FOR APPROXIMATION OF HELIX BY BI-CONIC AND BI-QUADRATIC BEZIER CURVES

  • Ahn, Young-Joon;Kim, Philsu
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.861-873
    • /
    • 2005
  • In this paper we approximate a cylindrical helix by bi-conic and bi-quadratic Bezier curves. Each approximation method is $G^1$ end-points interpolation of the helix. We present a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show that the error bound has the approximation order three and monotone increases as the length of the helix increases. As an illustration we give some numerical examples.

Explicit Matrix Expressions of Progressive Iterative Approximation

  • Chen, Jie;Wang, Guo-Jin
    • International Journal of CAD/CAM
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Just by adjusting the control points iteratively, progressive iterative approximation (PIA) presents an intuitive and straightforward scheme such that the resulting limit curve (surface) can interpolate the original data points. In order to obtain more flexibility, adjusting only a subset of the control points, a new method called local progressive iterative approximation (LPIA) has also been proposed. But to this day, there are two problems about PIA and LPIA: (1) Only an approximation process is discussed, but the accurate convergence curves (surfaces) are not given. (2) In order to obtain an interpolating curve (surface) with high accuracy, recursion computations are needed time after time, which result in a large workload. To overcome these limitations, this paper gives an explicit matrix expression of the control points of the limit curve (surface) by the PIA or LPIA method, and proves that the column vector consisting of the control points of the PIA's limit curve (or surface) can be obtained by multiplying the column vector consisting of the original data points on the left by the inverse matrix of the collocation matrix (or the Kronecker product of the collocation matrices in two direction) of the blending basis at the parametric values chosen by the original data points. Analogously, the control points of the LPIA's limit curve (or surface) can also be calculated by one-step. Furthermore, the $G^1$ joining conditions between two adjacent limit curves obtained from two neighboring data points sets are derived. Finally, a simple LPIA method is given to make the given tangential conditions at the endpoints can be satisfied by the limit curve.

CIRCLE APPROXIMATION BY QUARTIC G2 SPLINE USING ALTERNATION OF ERROR FUNCTION

  • Kim, Soo Won;Ahn, Young Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • In this paper we present a method of circular arc approximation by quartic B$\acute{e}$zier curve. Our quartic approximation method has a smaller error than previous quartic approximation methods due to the alternation of the error function of our quartic approximation. Our method yields a closed form of error so that subdivision algorithm is available, and curvature-continuous quartic spline under the subdivision of circular arc with equal-length until error is less than tolerance. We illustrate our method by some numerical examples.

AN ERROR BOUND ANALYSIS FOR CUBIC SPLINE APPROXIMATION OF CONIC SECTION

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.741-754
    • /
    • 2002
  • In this paper we present an error bound for cubic spline approximation of conic section curve. We compare it to the error bound proposed by Floater [1]. The error estimating function proposed in this paper is sharper than Floater's at the mid-point of parameter, which means the overall error bound is sharper than Floater's if the estimating function has the maximum at the midpoint.