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AN ERROR BOUND ANALYSIS FOR CUBIC
SPLINE APPROXIMATION OF CONIC SECTION

YoOuNG JOON AHN

ABSTRACT. In this paper we present an error bound for cubic spline
approximation of conic section curve. We compare it to the error
bound proposed by Floater [1]. The error estimating function pro-
posed in this paper is sharper than Floater’s at the mid-point of
parameter, which means the overall error bound is sharper than
Floater’s if the estimating function has the maximum at the mid-
point.

1. Introduction

The conversion problem of the rational splines into the (non-rational)
splines is one of the most important requirements in CAD or CAGD.
Many results for this topic have been published [2, 3, 4, 5, 6], but none
of them could obtain the closed error form of optimal convergence order
except for special cases. In the spline approximation schemes for the
special case of rational curves, e.g., circular arcs (7, 8, 9, 10, 11] and
conic sections [1, 12, 13], the closed error forms of optimal order of
convergence have been presented. Especially, Floater used the implicit
form of conic section [14]

1 — 4pProm =0,

where p = wy//wows is the fullness factor [15, 16, 17|, wo, w1, wa are the
weights of the rational Bézier representation of the curve and 1y, 71, 72 are
the barycentric coordinates with respect to the control points bg, by, be
of the conic. In this paper, we use the implicit form

T — 2ﬂ\/TOT2 = O,
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to obtain another error bound. In case the error function has its maxi-
mum at the mid-point of parameter, we can see that our error analysis
give the error bounds sharper than Floater’s analysis [1]. We apply our
error analysis to the cubic spline approximations for conic sections and
compare our error bounds to the former works [1], numerically. All er-
ror analysis discussed in this paper can be extended to tensor product
surfaces, as well as to polynomial approximation of higher degree than
three, if the error estimating function proposed in this paper has the
maximum at the mid-point of parameter.

2. Distance from conic section to the approximation curve

In this section we consider the distance between the approximation
curve and given the conic section represented in the standard rational
quadratic Bézier form

r() = B8P0 + Bi (1)1 + B (1)py
B3(t) + Bi(t)u + B3(t)
where pg, p1, p2 € R? are the control points, u > 0 is the weight

associated with p;, and B*(t) is the Bernstein polynomial of degree n
given by

t e [0,1],

n! ) '
B't) = ———=t'(1 —-t)" "
i () i(n —)! ( )
Any point (z,y) € Apgp1Pp2 can be written uniquely in terms of barycen-
tric coordinates 79, 71, 72, where 19 + 71 + 70 = 1, with respect to

Apop1p2 : (z,y) = Topo + T1p1 + T2p2. Consequently any function
can be expressed as a function of 7y, 71, 2. We define the functions fj
and f1: Apop1p2 — R by

(1) folz,y) = 2 —4p’rore  and  fi(z,y) =71 — 2uy/ToTa-

Since 0 < 71; <1, i =0,1,2, for each (z,y) € Apop1Pp2, the functions
fo and f1 are well-defined in Apgp1p2, especially, fy is defined in the
whole zy-plane [14]. The following lemma is also a well-known fact [14].

LEMMA 2.1. Let f; : Apopip2 — R be defined as in Equation (1).-
For t € [0, 1], the point r(t) satisfies the equation f;(r(t)) =0, j =0,1.

For any two plane curves c¢(s) and q(¢), s,t € [0, 1], it is not easy to
find the Hausdorff distance dy(c,q) in general, where

dii(e, @) = max{maxmin e(s) — q(t)|, max min e(s) — a(t)]}
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FIGURE 1. In the triangle Apopip2, the coordinates
(u,€) is symmetric with respect to the line passing
through p; and PZP2.

For any onto function ¢ : [0,1] — [0, 1] it is clear that
(2) maxmin [¢(s) - q(t)| < max|c(s) — q((s))].

For each t € [0,1], let s" € [0,1] be a value satisfying ¢(s') = t. (It is
possible since ¢ is onto.) Then

(3) maxmin e(s) - q(t)| < max|e(s') - q(t)] = max|e(s') — a(¢(s"))],

since ¢ is onto. Thus it follows from Equations (2)-(3) that
< - .
(4) du(c,q) < max [e(s) — q(¢(s))|

Using the inequality (4) we present a new bound of the Hausdorff dis-
tance dy(c,r) between the conic r(t) with control points pg, p1,p2 and
the plane curve c(s) contained in the triangle Apop1ps, in the following
proposition.

PROPOSITION 2.2. Suppose that ¢ : [0,1] — R? is any continuous
curve which lies entirely inside the (closed) triangle Apop1p2 and such
that ¢(0) = pg and c(1) = py. Then

6)  dner) < gy mex |fi(e(s))lIpo + P2 — 21| = (e, ).
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PRroOOF. For each point ¢(s}, s € (0,1), there exist two intersection
points of the boundary of Apgpips and the line passing through the
point ¢(s) along the direction pg + p2 — 2p;, as shown in Figure 1. We
denote the intersection point on the line segment Pgp; by p3, and the
other by ps. Thus we have

+
(6) Ps=(l-wpo+u™ 2 and  ps=(1-u)po+upy,
or

_{,_
(M ps=(l-upz+u™ZP2 and  ps=(1-wp2+ups,

for some u € [0,1]. Let h: [0,1] — R be the restriction of f; to the line
segment P3Py

mE) = fi((1 - &)ps + £pa),
£ €[0,1]. By Equations (6)-(7), we have
®  mMo=pTEE
for 4 = 0 or 1. It follows from Equations (1) and (8) that
hE) = uf — u /(2 — u— uE)(1 - Eu

and its derivative

W) =u+

1—-8%u
p2i + uépy + ( 25) P2-2i),

#(1 — ué)u
V2 —u—uf)1-Eu

for all £ € [0,1]. Since

Ve - gus U Aoy

for all u, £ € [0,1], we have
(9) W (&) 2 w(l+ p).

Since r and c¢ are continuous and r(i) = c(i) = pg;, ¢ = 0,1, for each
s € [0,1] there exists ¢ € [0,1] such that r(t) and c(s) lie on the same
line segment p3pa and

r(t) = (1 ~ &)ps + &opa and c(s) = (1 —&)p3 + &1pa
for some £g,&; € (0,1). By the mean value theorem and Equation (9),

{h(&1) — h{&o)| = H}Ein‘h'(ﬁ)llﬁl — &} = u(1 + p)i& ~ &ol.
Thus we have

lc(s) = r(t)] = |1 ~ &l |p3 — pa| <

|h(&1)]

20 1) Ip3 — P4
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since h(§p) = 0 or equivalently fi(r(¢)) =0. By |ps — pa| = u|po +p2 —
2p1]/2 and h(&) = fi1(c(s)), we get

(1) le(s) ()] < 55l alels)l Ipo + P2 ~ 2pal

Hence the required estimate (5) follows from Equations (4) and (10) by
taking the maximum over s € [0, 1]. 0

Floater [1, 13] suggested the error bound by

(11) drle,r) < }lmax{ﬁ 1) max |fo(e(s))lIPo-+Pa—2pal =: ¥ 1)

3. Cubic interpolations for conic sections

In this section we apply Proposition 2.2 to cubic interpolations for
conic sections whose error functions have the maximum at the mid-
point of parameter. Let b(¢) be the cubic G end-points interpolation
represented by

b(t):= Y Bi(t)b;, te[0,1],

where
(12) bg = po, bz =p3, by =(1-A)po+Ap1, bz =(1-A)p2+Ap:.
The parameter A (0 < A < 1) determines the cubic curve
b(t) = (Bf + (1 — A)Bi)po + A(B} + B)p1 + (1 — N) B3 + B})p2,
and its error function
fo(b(t)) =
21— £)?[9N% — 4p?{(1 — ) + 3(1 — Mt +3(1 = N)(1 = 1)}]
(13) f1(b(2)) =
t(1 — t)[3A — 2uy/{(1 — t) + 3(1 = A}t +3(1 — A)(1 - t)}].
In the following proposition, we show that the error bound &(b,r)

is sharper than ¢(b,r) when the error functions fo(b(t)) and f1(b(t))
have the maximum at the mid-point of parameter.

ProposiTION 3.1. If fo(b(t)) and fi(b(t)) have the maximum at
t =1/2, then

e(b,r) < ¢(b,r).
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Proor. By Equation (13), we have
1
fo(b(1/2)) = {90~ 4*(4 - 30)%)

Alb/2) = F{3\—alt- 3N}

Thus
1/)(b, 1') 14 “ 2
A, o 2L E — 1 1
<(b.1) 3 {8X + p(4 — 30)} max{1/p*, 1}
1
—I—Efi{?,/\w@—w)p —% 1 ifp>1
1+81/”{3A(1/u~1)+4}>1 if <1
and the assertion is obtained. I

The functions fp and fi; have the maximum at ¢t = 1/2 for some
Alp) such as in the following Propositions 3.2-3.4. Note that all cabic
Bézier curves with G! end-point interpolation of the conic section have
the control points in forms of

bg = po, bz =p2, b1 =(1—A)po+Ap1, b2 =(1—-A)p2+ A2p1

for A1, A2 € (0,1). But the barycentric coordinates of r(t) and by, ,(t)
for Ay = Ao, are symmetric with respect to the line passing two points
p: and {pp + p2)/2, and both error bounds (b, r) and ¥(b,r) as in
Equations (5) and (11) depend on the barycentric coordinates and the
length |pp+p2 —2p1, not on the difference of length of two legs |po —p1|
and |p; — p2]. Hence we deal only the case of Ay = Ay, e, the inner
control points of the cubic G! end-points interpolation b(t) in this paper
are the same as in Equation (12).
Thus the error function f1(b(f)) has the symmetry with respect to
= 1/2. For the simplicity, putting 8 := ¢(1 —t) for ¢ € [0,1/2] and
F(8) := f1{b(t)) for ¢ € [0,1/4], we have

(14) F(8) =6 [:u o/ BA=220 13— 3)\} .

In the following propositions, we present the maximum error bounds for
the variant cubic interpolations having the parameter A.

PROPOSITION 3.2. Set A(u) = 2u/(1t + /42 +3). Then b is a G*
Hermite interpolation of v, and the HausdorfT distance between the two
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Error

0.01

0.005

FIGURE 2. Two error functions e(b,r) and ¥ (b,r) for
conic approximation with Au) = 2u/(un + /p? + 3),
where [po + p2 — 2p1| = 1.

curves r and b is bounded by

dn(b,r) < e(b,r) = MEH1~ V3 + 2)?

+ p2 — 2p1].
8(1+u) |P0 P2 P1|

PROOF. It is well-known [1, 18] that b(t) is a G? end-points interpo-
lation of r(¢). By Equation (14) we have

|’\/9+49 (5p% +3 — 4p\/pu? + 3) }

(15)  F(0) =

1+ \/u +3

8u2 +2(u?+3
dp/i2+3< M +2(” T3 s ys

the equation in the bracket of Equation (15) is increasing as a function
of # and is positive. Thus [F'(§)| is increasing and has the maximum at

6=1/4,ie.,
1(b(0))] = [F(6)] < |F(1/4)] = LT —4\/3+—u2)2

for all t € [0,1/2]. Thus by Proposition 2.2, we have the assertions. [

Since
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REMARK. Put A(u) = 2u/(n + /2 + 3). Then fo(b(t)) is a poly-
nomial of degree six and its absolute max1mum is obtained at t = 1/2,

and
da(b,) < v(b,z) = LF LAV 2]

This error bound (b, r) is obtainable by the error analysis in [1]. As
shown in Figure 2, e(b,r) is a sharper error bound than ¥ (b,r).

max{1, u?}[po + P2 — 2p1/-

We adopt the method of subdivision of conic section proposed by
Floater [1, 12, 13]. At any step, every conic segment is subdivided at
its shoulder point into two segments, so that at each step r, the conic
r consists of the 2" segments. Under the subdivision scheme, the cubic

approximate spline with A\(u) = 2(6u% + 1 — 1/3u2 + 1)/(12u? + 3) of
the conic section r is G*. (Refer to [1].)

PROPOSITION 3.3. Set A(u) = 2(6p2 + 1 — /3u2 +1)/(12u% + 3).
Then

2ud — 6+ u—1+(p+1)/3u2+1

4(p +1)(4p* + 1)

ProoOF. Putting F(6) as in Equation (14) we have

f1(b(t)) = F(6) = %W +1- VB2 1 p/F )

du(r,p) < Ipo + P2 — 2p1].

for 6 € [0,1/4], where
F1(6) = 4602 — v/3u7 +1)° + (4% + (1 +2V/32 + 1),
Since Fj(6) is a linear increasing function and
[6u® +1—/3u2+1— uy/F(0)] <0

for all g > 0, F(6) is negative for all § € [0,1/4], and also has absolute
maximum at § = 1/4, i.e.,

3 _ 2 .
A < 1Py = H WA G D/ 4]

for all t € [0,1]. Thus, by Proposition 2.2, we have the assertion. O

REMARK. Put A(u) = 2(6p2 + 1 — 4/3u2 +1)/(12u? + 3). Then
fo(b(?)) is a polynomial of degree six and its absolute maximum obtained
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Error

0.04

0.02

FIGURE 3. Two error functions e(b,r) and %(b,r)
for conic approximation with A(u) = 2(6u% + 1 —

3u% +1)/(124® + 3), where [po + p2 — 2p1| = L.

att=1/2, and
di(b,r) < (b,r)

4u8 — 294 — 13p2 — 2+ 2(2ut + Tu? 4+ 1)4/3p2 + 1
4(4p2 +1)2

 max{1, p?}
4u2

This error bound ¥(b,r) is obtainable by the error analysis in [1]. As
shown in Figure 3, e(b, r) is a sharper error bound than (b, r).

lpo + P2 — 2p1|.

Note [1] that the cubic approximate spline with A(u) = 2u2/(2u%+1)
of the conic section r is C2.

PROPOSITION 3.4. Set A(u) = 2u?/(2u® + 1). Then the Hausdorff
distance dg(r,p) is bounded by

[A1 ()] :
— -2 fu <
2(1+M)[Po+p2 Pi ifp<po

g(b,r) = max{| A1 (u)], |A2(u)|}
21+ p)

lpo+ P2 —2p1| if p > po,
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where
™ % (1 + 374+ 9VIT)Y3 —2(37 + 9\/ﬁ)-1/3) ~ 1.575,
and
I e V)
Ax(p) = e

w(5u? +3) + (3u? + 1)3/2°

Proor. By Equation (14) we have

2u

where F3(0) = 6(3p — /F3(0)) and
F3(0) = 3(1 + p?) +40(1 — p?)2.

For p < 1, since 3u — \/F3(0) is negative decreasing, |Fy(6)| has its
maximum at § = 1/4.
For p > 1, we have

F(0) = ——— {2u + 142001+ 42)? — u/F5(0) }

F3(0)
which has a unique positive real zero
g, = ¥ 1+ 3u? — (1+ p?) 2u% +1
0= = 3
2(p? - 1)2 2p? — 1)(u/3u2 + 14 p2 +1)

which is strictly decreasing from oo to zero as p is increasing from 1 to
oo. Thus we have unique root u = pg satisfying the equation 6y = 1/4.
For p < pg, |F2(0)| has its maximum at § = 1/4, and for p > ug, |F2(0)|
has the local maximum at 6.

Thus, for u < uo, |F(6)] has the maximum |F(1/4)|, and for u > ug,
the maximum of |F(0)| equals max{|F(1/4)|, |F(6o)|}. Since F(1/4) =
Ai1(p) and F(6y) = Az(u), the assertion follows. O

REMARK. Put A(u) = 2u%/(24? 4+ 1). Then the sixth degree polyno-
mial

2(,,2 _
alb(0) = Y435 (8- 402 — - )] 21— 17
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T T
Error \

0.025

f 15753 7

FIGURE 4. Two error functions ¢(b,r) and (b, r) for

conic approximation with A(u) = 2u?/(2u2 + 1), where
|Po + p2 — 2p1] = 1.

is monotone in (0,1/2) for u < /3, so that it has the unique local
extremum

I (e )
Flbo(1/2) = S,

in (0,1). For > v/3, fo(b(t)) has a unique local extremum u2/(2u? +
1)2(u? — 1) at the point satisfying t(1 — ¢) = 1/2(u? — 1) in (0,1/2)
Thus the Hausdorff distance dy(r,p) is bounded by

|2 (u? — 1)(p? — 4)| :
~ 1 —2py| fu<V3
max{ s g g ot P22l p<V3

(2N2 + 1)2(M2 _ l)lpo +p2—2p1| ifp> V3.

This error bound (b, r) is obtainable by the error analysis in [1]. As
shown in Figure 4, (b, r) is a sharper error bound than (b, r).
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—— Ellipse

D\ =

pHy/ 12 +3

— )= 2(6u% +1-34/3u2+1)
- 12u%+3

2
Co— )\ = 2K
o= A= g8y

FIGURE 5. A quarter of the ellipse plotted by solid

lines and its approximate cubic Bézier curves plotted

by dash-lines or circles with A(u) = _+—2£7:3’ Alp) =
ptV

2(6u24+1-34/3p2+1 2 .
= 12#2+3“ ) and Alp) = 2—351—1, respectively.

4. Examples

In this section, we present the cubic interpolations of ellipse and the
error functions. Let r(t) be the conic section with control points (2,0),
(2,1) and (0,1), in order, and weight u = 1/ V/2, which yields a quarter of
ellipse in the first quadrant, as shown in Figure 5. We also plot the Gt cu-
bic approximation Bézier curves b(t) having A(u) = 2/ (1 + /12 + 3),
Ap) = 2(6p2 + 1 — 3v/3u2 + 1)/(124 + 3), and A(u) = 242/(2p° + 1),
respectively, in Figure 5. In Figure 6, we plot the error functions
2(—#1+—15f1 (b(t))|po+p2—2p1| by solid lines, and % max{;}g, 1} fo(b(®))lpPo+
p2 — 2p1| by dash-lines, whose maximum norms are equal to £(b, r) and
¥(b,r), respectively. We can see that the maximum norm &(b, r) is less
than ¥(b,r). Although the error function T;Jr—l)lfl (b(t))]|po + P2 —2p1}
is not smooth at both end points as shown in Figure 6, the cubic ap-
proximation Bézier curve b(t) is at least G! end points interpolation.
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_ 2647 +1-3+/3u241) . ou?
A= 12u7+3 A= 2 é+1

- 0.02

0 5 1 0 5 |
~—— QOur Analysis - —- Floater’s

FiGURE 6. The error estimating functions using our
analysis and Floater’s are plotted by solid lines and dash-
lines, respectively.

5. Comments

In this paper, we presented an error analysis of spline approxima-
tion for conic section curve, and we applied it to the cubic approxima-
tions. We compared this to the error bound obtainable by the method
of Floater, and we saw that our analysis gives a sharp error bounds in
case the error has the maximum at the mid-point of parameter. Fur-
thermore, this error analysis can be extended to the approximations of
conic sections by quartic or quintic splines, and to the approximations
of quadric surfaces by tensor product splines.
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