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ERROR ANALYSIS FOR APPROXIMATION OF HELIX
BY BI-CONIC AND BI-QUADRATIC BEZIER CURVES

YouNGg JooN AHN AND PHiLsU KiMm

ABSTRACT. In this paper we approximate a cylindrical helix by bi-
conic and bi-quadratic Bezier curves. Each approximation method
is G end-points interpolation of the helix. We present a sharp
upper bound of the Hausdorff distance between the helix and each
approximation curve. We also show that the error bound has the
approximation order three and monotone increases as the length
of the helix increases. As an illustration we give some numerical
examples.

1. Introduction

In recently twenty years, many methods for approximation of circu-
lar arc or helix by Bezier curves have been developed. Since circular
arcs cannot be represented by polynomials in explicit form, circular arc
approximations with Bezier curves have been developed in many papers
[3, 5, 6,8, 11,12, 13, 17]. Since helices cannot be represented by polyno-
mials or rational polynomials in explicit form, the helix approximations
with rational Bezier curves have been also developed in many papers.
They are focused on the rational Bezier curves of degree three [14], of
degree three and four [16], of degree from four to six [23], or of degree
five [25]. Circular arc and helix have a property whose segments sub-
divided by equi-length are congruent. Thus, if a error analysis for the
approximation of a segment by Bezier curve is obtained, then that for
the approximation of whole curve is also done. So, the error analysis and
the method for the approximation of circular arc or helix are interesting
problems in Computer Aided Geometric Design.
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In the paper [2] the helix was approximated by G' quadratic ratio-
nal/polynomial Bezier curves, and a good error analysis was presented.
But the method in [2] have an important demerit which does not yield
G' end-point interpolation of helix segment. That is to say, the helix
segment and the approximated quadratic curve do not have the same
tangent direction at both end-points. In this paper we present a end-
point interpolation of helix segment by biconic and biguadratic Bezier
curves. A sharp upper bound of the Hausdorff distance between the he-
lix and each approximation curve is presented All upper bounds of the
Hausdorff distances we present are monotone increasing as « increases so
that the minimum subdivision schemes can be achieved within given tol-
erance. All upper bounds are of approximation order three O(a?) which
is optimal order [7] with spatial quadratic rational/polynomial Bezier
curves. All error bound analysis for the helix approximation with the
biquadratic polynomial curve are well done by the help of Floater’s error
analysis [11], which is restated in Proposition 2.1 in this paper.

The paper is organized as follows. In section 2, G' end-point in-
terpolation of the helix by biconic and biquadratic Bezier curves are
presented, and the error analysis is given. In section 3, our approxima-
tion method is applied to some examples. In section 4, we summarize
our work.

2. Helix approximations with biquadratic rational and poly-
nomial Bezier curves

In this section we present G' end-points interpolations of the helix
segment. Using affine transform all circular helix could be represented
by

(2.1) h(f) = (rcosf,rsinf,ph), 0¢€|[—a,q]

for some positive real numbers «, p and r. For 0 < a < 7, we define the
biconic and the biquadratic Bezier curves as

T(t) = { (Z?:o sz’sz(t))/( ?:0 w; B;(t)) 0<t<1,
(CiowibiraBi(t — 1))/ (Xig@iBi(t — 1)) 1<t<2,

oy _ [ Y2 biBi(u) 0<u<l,

) = { Zf:g bijeBi(u—1) 1<u<2,
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FIGURE 1. (a) The helix curve h(d), § € [—=n/2,7/2],
and its projection ho(#) on zy-plane, when p = r =1
and a = 7/2. (b) The biconic approximation r(t), t €
[0, 2], and its projection To(t). (c) The biquadratic Bezier
approximation q(u), v € [0,2], and its projection qo(u).

The dotted lines are control polvgon babibabsby.
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having the control points
bo = (%o, §io, Z0) = (r cos o, —r sin &, —pay),
l_)1 = (jh gl, Zl) = (’I", —rtan —;—7 —p(O[ — tan %)a

by = (%2, §z2, 2) = (,0,0),
bs = (%3, §3, 23) = (r,r tan %,p(a — tan %),
by = (T4, 1, 24) = (rcos o, rsin @, pav),

and the weights wo = 1, w1 = cos(a/2),ws = 1, as shown in Figures 1(a)-
(c), where B;(t) = (f)t’(l — )27t i =0,1,2, is the quadratic Bernstein
polynomial. The six points of ¥(¢), t = 0,1,2 and q(u), v =0,1,2 lie on
the helix and all points of F(t), 0 < t < 2, lie on the cylinder 22432 = r?
containing the helix. The control points by and bs are chosen so that
h'(—a), @'(0) and ¥(0) are mutually parallel, h'(a), @'(2) and ¥'(2) are
also mutually parallel, and q(u) and ¥(t) are C'-continuous on [0, 2].
Note that

h'(—a) = (rsina, rcos a, p),

q'(0) = 2(b; — by) = 2tan%(r sin a, T cos a, ),

#(0) = 2cos %(131 — bo)
are mutually parallel. Since all curves h(6), r(¢) and q(u), on the do-
mains 6 € [—a,a], t € [0,2] and u € [0, 2], respectively, are symmetric
with respect to z-axis, h'(a), ¥'(2) and @'(2) are parallel and so the bi-
quadratic rational/polynomial Bezier curves ¥(t) and §(u) are G' end-
points interpolation of the helix h(#), § € [—a,a]. Since the weight

cos(a/2) is less than one, the biquadratic rational Bezier curve F(t) is
an biellipse. For 0 < ¢ < 1, putting

2
o(t) = Y @:Bit) = (1 - t)? + 2 cos -;‘- t(1—t) + 12,
=0

) .
z(t) = ;wi@Bi(t) =r(cosa(l — t)* + 2cos(%)t(1 —t) +t2),

2
yt) = ;"I’iﬂiBi(t) = —r(l —t)(sina(l —t) + 2sin %t),
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iz Bi(t) = —p(1 — t)(a(l — t) + 2(« cos% —sin %)t),

pall
v

.Mw
=

we have F(t) = (z(¢), y(t), 2(t)) /w(¢) for t € [0, 1].

We find a sharp upper bound of the Hausdorff distance between the
helix and each approximation curve p(t), t € |a, b}, is presented, where
the Hausdorff distance is defined (1, 11] by

, max min
a<t<b—-a<Li<La

dg(h,p) = max{ max min ’h(@) —p(t)

—a<f<aa<t<d

h(0) - p(0)|

The following proposition was presented by Floater[11], which is needed
to analyze the error bounds proposed in this paper.

PROPOSITION 2.1. Let a conic r(t) and a quadratic Bezier curve q(u)
have the same control points pg, p1, P2, and r(t) have the weights 1, w,
1, in order. Then there is a reparametrisation (or one-to-one and onto
mapping) t(u) such that r(t(u)) — q(u) is parallel with po — 2p1 + p2
and

1 — wl
t(u)) — <Y pg—2 .
e(t(w) — a(u)] < 4(1+w)lpo P + P2
PROOF. See Proposition 2.1 and Corollary 2.2 in Floater[11]. O

PROPOSITION 2.2. For each «, p and r, the helix approximations
with biquadratic rational/polynomial curves T(t), t € [0,2], and q(u),
u € [0, 2], have the error bounds

(2.2) dg(h,t) < pE(a),
(23)  du(h@) < \/((E(@)+ F(a)? + (F(a/2)2,

where

. o —sina
A7 4" sina + 2sin(a/2) — acos(a/2)’
E(a) = — arctan 3{@_’4) + thf‘) ,
2(ta)  pw(ta)
= 1 o o
Fla) = ~tan® & o
(a) 1 tan 1 (2tan 5 a),

F(a) = 2sin* % sec a.
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FIGURE 2. (a) ta for o € [0,7/2]. (b) &(t) for t €
[0,1) when a = 7r/ (c) The upper bounds pE(a)
and \/p*(E(a) + F())? + r2F(a/2)? (solid lines) with
F(a/2) and F(a) for a € [0,7/2] (dash lines) when

p=r=1
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Proor. Since h(f), r(t) and q(u) are symmetric with respect to
x-axis, it suffices to find the upper bound of the Hausdorff distances
dpg(h,t) and dg(h,q) on the half domains 0 € [~a,0], t € [0,1], and
u € [0,1]. It is well known [1, 11, 12] that

(2.4) ds(b,) < max [h(0() (1)

for a reparametrisation (or one-to-one and onto mapping) ¢ = 6(t).
With the reparametrisation § = 6(t) = arctan(g(t)/Z(t)), we have

- y(ty  Z(t)
h(6(t)) - = ANV ST
0(t)) —£(t) (0,0,p arctan 0 B0
for 0 <t < 1. Let &(¢) be the third component in the last equation. It

suffices to find the maximum of |&()| for 0 < ¢ < 1. Since Z(t)2+§(t)* =
r2w(t)?, we have

The numerator of the derivative &/(t) in the last equation is the quadratic
polynomial

2pr*t{(a — sin & 4 2sin(e/2) — acos(a/2))t — (o — sina)}
and has zeros at

f4 = a-sina and fp =0
A7 o Tsina + 2sin(a/2) — acos(a/2) B=

Since 0 < #4 < 1, £(t) decreases on (0,f4) and increases on (¢4, 1),
as shown in Figures 2(a)-(b). Since £(0) = £(1) = 0, &(¢) has the
absolute maximum —&(¢4) at £4 in the closed interval [0,1]. Thus with
the reparametrisation 6 = arctan(y(t)/z(t)), h(6(¢)) — ¥(t) is parallel
with z-axis, and

[h(8(t)) — £(t)| < —&(ta) = —parctan 5(ta) + Ata) =pE(a)

(ta)  w(ta)

for all ¢t € [0, 2], and the error bound (2.2) of dy(h,T) is obtained.

We find the upper bound (2.3) of the Hausdorff distance between
the helix h(f) and the biquadratic Bezier curve q(u). By Proposition
2.1, there exists a reparametrisation ¢ = t(u) such that ¥(t(u)) — q(u) is
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parallel with BO - 21_)1 + 52 and

i B 1 - cos(a/2)
[E(t(w)) — aQ(u)| < 4(1 + cos(a/2))

o — 2b1 + by

1
= Ztan Z)bo - 2b; +b2}.

By simple calculations, we have

(bg — 2b; +Bz) = — (27'sin2 %,2rsin2 %tan%,p (2tan% - a))

and so

1 2 (8] — — — 4 « —
Ztan 1 (bo —2by + b2) = —2rsin 1 (1 tan — 5 O) — pF(a)(0,0,1).

With the reparametrisations 8 = 6(t) and ¢t = t(u),
[0(6) — Q(u)| = |(h(6(t(u))) — £(t(w)) + (F(t(w)) — q(w))|
< ‘ +p(0,0, E(a) + F(a)) — 2r sin® & 1 (1 tan = 0) '

2’
< \/(B@) + (@) + (rF(a/2)

Thus we obtain the upper bound (2.3) of the Hausdorff distance dg (h, Q).
: O

As an illustration, for the given helix h(#) = (cos#,sinb,8), 8 €
[—7/2,7/2], we obtain the conic and the quadratic Bezier approxima-
tions as shown in Figures 1(a)-(c). By the proposition above, the upper
bounds of dg(h,F) and dy(h,q) are 1.04 x 107! and 1.37 x 107}, re-
spectively. By some numerical method, we also find the real Hausdorff
distances dg(h,F) = 7.37 x 1072 and dg(h,q) = 1.06 x 1071,

We show that the error bounds (2.2) and (2.3) are monotone increas-
ing as shown in Figure 2(c), and have the approximation order three

O(a?).

PROPOSITION 2.3. The error bounds of dy(h,q) and dgy(h,¥) are
monotone increasing as o increases and are of approximation order three

O(a?).

PROOF. It is clear that F(a) and F(a) are increasing as « increases.
We show that E(«a) is also monotone increasing. Using the chain rule
for the multi-variables function we have
(2.5) pE' (@) = _p(i’ﬂa — Zaf) — 1*(ZoW — ZWq)

2,52 _
rew t=t4
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Simple calculations yield

_ _ psina $4(1 —t4) (sina(l —t4) + acos(a/2)t4)

PE(e) = (1+ cosa) B(tr)? ~0

since 0 < t4 < 1. Thus the upper bounds of dy(h,F) and dg(h, q) are
strictly increasing as « increases.

It is also clear that F'(o) and F'(a) are of approximation order four
O(a*). We show that E(a) is of approximation order three O(a?). By
the Taylor expansion of the followings at « = 0,

_2 1 5 4
4=3 " 10® T
T(ta)=r— §a2 + (’)(a4),
S )= — Ly T3 5
g(ta) = 3a+45a + O(e?),
5 _ _P Up 5., 5
U 4
g(ta) _ -5+ Fa+0(e®) 1 2 4 5
) - rofa i 0@y 3% 1 Tol)
2(ta) _ —pa/3+0@*)  p p 5
Wiy - 110@) 3oty ol
we have
= 17@1)) 1(@(&))3 Z(ta)
E(a) = — e e R
@ {(m ) 73\ Pl
= 8—21a3+(’)(a5).

Thus the upper bounds of dg(h,r) and dg(h,q) are of approximation
order three O(a?). O

REMARK 1. Since the error bounds are monotone increasing, the
subdivision scheme for the helix approximation by the minimum number
of segments of the biquadratic rational/polynomial Bezier curves within
given tolerance can be obtained.
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z T

FIGURE 3. (a) helix curve h(f) = (cos#,sin8,6), 6 €
[0,27]. (b)-(c) biconic curve T(t) using four and six seg-
ments. (d)-(e) biquadratic Bezier curve q(u) using four
and six segments. (b)-(e) The dotted lines are control
polygons. The circles are the junction points of two con-
secutive segments. ‘
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no. segments dg(h,t) app. order. dg(h,q) app. order.

4 1.04x1071 1.37x1071

8 1.22x1072 3.08 1.30x10~7 3.39

16 1.50x1073 3.02 1.52x1073 3.10

32 1.87x1074 3.00 1.88%x 1072 3.02
TABLE 1. The error bounds of dy(h, T) and dg(h, q) for
the given helix curve h(6) = (cos#,siné, ), 6 € [0, 2],

with k-segments, k = 4, 8,16, and 32.

3. Examples

In this section the helix is approximated by the biquadratic ratio-
nal/polynomial curves/surfaces. Two line segments are connected by
the helix which is given by

h(f) = (rcosf,rsinf, ph), 6 € |0,2n]

for r = p = 1, as shown in Figure 3(a). Using the method proposed in
Section two we obtain the G! biquadratic rational and polynomial spline
curves r(t) and q(u) which are consisted of ‘four’ segments, i.e., two
biquadratic rational/polynomial Bezier curves, respectively, as shown in
Figures 5(b) and (d). By Proposition 2.2, we have the error bounds

dg(h,£) <0.104 and  dy(h,q) < 0.137.

Also, the error bounds for the approximations of the helix by k-segments
of r(t), q(u), ¥(t) and q(u), with k = 8,16, 32, are obtained as shown in
Table 1. We can see that the approximation order of these approxima-
tion methods are three O(a?).

Let the tolerance be given by 0.1. Then the subdivision is needed for
the helix approximation by the biconic ¥(¢) and the biquadratic q(u).
Using the subdivision scheme in Remark 1, the helix approximation by
the biconic r(t) and the biquadratic q(u) can be achieved within the
tolerance by the number of subdivision k = 6, respectively, as shown in
Figures 5(c) and (e). They have the new upper bounds of the Hausdor{f
distances dg(h,t) < 2.94 x 10~2 and dg(h,q) < 3.30 x 10~2, which are
less than the tolerance.

REMARK 2. Using our method in this paper, two line segments are
connected by the biquadraic rational /polynomial spline with G*-manner,
i.e., continuity of tangent direction. But if the method in [2] is applied,
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then line segments and approximated quadratic rational/polynomial sp-
line do not have the continuity of tangent direction at the junction
points, although the approximated quadratic rational/polynomial spline
is G! continuous in its interior.

4. Comments

In this paper we presented the approximation method of the cylin-
drical helix by biconic and biquadratic Bezier curve. For each case we
presented the error bound analysis of the Hausdorff distance between
the helix and each approximation curve. The approximation methods
in this paper are different from those in [2], since our methods are G*
end-points interpolation of helix, but those in [2] are G° end-points inter-
polation of helix. The approximation methods in this paper can be also
extended to the approximation of any sweeping surface of conic section
along the helix as well as the approximation of “torus-like helicoid” [2].
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