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CIRCLE APPROXIMATION BY QUARTIC G2 SPLINE USING ALTERNATION
OF ERROR FUNCTION

SOO WON KIM1 AND YOUNG JOON AHN1†

1DEPARTMENT OF MATHEMATICS EDUCATION, CHOSUN UNIVERSITY, SOUTH KOREA

ABSTRACT. In this paper we present a method of circular arc approximation by quartic Bézier

curve. Our quartic approximation method has a smaller error than previous quartic approxi-

mation methods due to the alternation of the error function of our quartic approximation. Our

method yields a closed form of error so that subdivision algorithm is available, and curvature-

continuous quartic spline under the subdivision of circular arc with equal-length until error is

less than tolerance. We illustrate our method by some numerical examples.

1. INTRODUCTION

Circular arc and conic section have been widely used in CAD/CAM or Computer Vision. But

these curves cannot be expressed by polynomial curve. Thus circle approximation and conic

approximation by spline curve are important tasks in CAGD(Computer Aided Geometric De-

sign) or Geometric Modeling. In recent twenty years a lot of methods of circle approximation

and conic approximation by Bézier curve or spline have been presented.

The methods of Circle and Conic approximation by quadratic Bézier curve are simple and

easy to calculate error. Mørken[13] presented the best approximation method of the circular

arc by quadratic Bézier curve. Lee et al.[11] introduced some approximation methods of the

circular arc by quadratic Bézier curves to obtain the offset approximation of planar spline curve

using convolution of the quadratic approximant and the planar spline curve. Floater[6] showed

that the quadratic approximant of conic section is curvature continuous under the subdivision

of shoulder point of conic, and presented the upper bound of the Hausdorff distance between

the conic section and the quadratic approximant.

The methods of circle and conic approximation by spline of odd degree are as follows.

Dokken et al.[3] and Goldapp[8] proposed the best Gk cubic approximations of circular arc

for k = 0, 1, 2. Floater[7] presented a great approximation method of conic section by spline

of odd degree n having approximation order 2n, which is the optimal approximation order.

Fang[4, 5] gave Gk quintic approximation of circular arc and conic section for k ≥ 2.
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FIGURE 1. Unit circular arc (red color) c(θ) = (cos θ, sin θ), 0 ≤ θ ≤ α
and quartic Bézier approximation(blue color) b(t) with control points bi, i =
0, · · · , 4. The dash-lines(blue) are control polygon.

Some methods of circle and conic approximation by quartic spline have been presented.

Ahn and Kim[2] obtained Gk quartic and quintic Bézier approximations of circular arcs using

error functions, k ≥ 2. Kim and Ahn[10] presented another quartic approximation methods of

circular arc, and Ahn[1] extended the circle approximation methods by quartic spline to conic

approximation. Hur and Kim[9] proposed the best G2 quartic and G1 cubic approximation

of circular arc. Liu et al.[12] gave circular arc approximation by quartic G2 spline having

smaller error than previous quartic approximation. In this paper we present a quartic G2 spline

approximation of circular arc having smaller error than previous quartic approximation using

alternation of error function.

In §2, previous methods for circle approximation by quartic spline are introduced. In §3,

our quartic approximation of the circular arc is presented and the closed form of the Hausdorff

distance between the circular arc and the quartic approximation curve is obtained. We have the

subdivision algorithm and some numerical examples in §4, and summary our results in §5.

2. PRELIMINARIES FOR QUARTIC APPROXIMATION OF THE CIRCULAR ARC

In this section we propose the quartic Bézier approximation of the circular arc with angle

0 < α ≤ 2π and radius 1. The unit circular arc c : [0, α]→ R2 can be parametrized by

c(θ) := (cos θ, sin θ) , 0 ≤ θ ≤ α,

as shown in Figure 1. Let B4
i (t) be the quartic Bernstein polynomial

B4
i (t) =

4!

i!(4− i)!
ti(1− t)4−i.



CIRCLE APPROXIMATION BY QUARTIC G2 SPLINE 173

The quartic Bézier approximation curve b : [0, 1]→ R2 of the circular arc c(θ) is given by

b(t) := (x(t), y(t)) :=
4∑

i=0

biB
4
i (t) (2.1)

with its control points bi := (xi, yi), 0 ≤ i ≤ 4

b0 = ( 1, 0 ), b1 = ( 1, u ), b2 = v( cos α
2 , sin

α
2 )

b3 = ( cosα, sinα ) + u( sinα,− cosα ), b4 = ( cosα, sinα ) (2.2)

so that the quartic approximation b(t) is a G1 endpoint interpolation of the circular arc c(θ)
for u > 0.

For the circular arc c, the Hausdorff distance dH(b, c) between two curves c and b is

dH(b, c) = max
t∈[0,1]

|
√

x2(t) + y2(t)− 1|

Ahn and Kim[2] used the error function ψ(t) by

ψ(t) := x2(t) + y2(t)− 1. (2.3)

to calculate dH(b, c) =
√
‖ψ(t)‖∞ + 1− 1 for nonnegative ψ, where the uniform norm of ψ

on [0, 1] is denoted by

‖ψ(t)‖∞ := max
t∈[0,1]

|ψ(t)|.

If ψ(t) ≥ −1 for all t ∈ [0, 1], then

dH(b, c) = max{
√

max
t∈[0,1]

ψ(t) + 1− 1, 1−
√
1− min

t∈[0,1]
ψ(t)}.

Equations (2.1)-(2.3) yields ψ(t) = 4t2(t− 1)2ζ(t) where

ζ(t) =
(
−9v2 − (24u sin

α

2
+ 18 cos

α

2
)v − 16u2 sin2

α

2
− 12u sinα− 9 cos2

α

2

)
(t− 1

2
)4

+

(
9

2
v2 − 9 cos

α

2
v − 8u2 sin2

α

2
− 8u sinα+ 4− 17

2
cos2

α

2

)
(t− 1

2
)2 (2.4)

− 9

16
v2 − (

3

2
u sin

α

2
+
15

8
cos

α

2
)v − u2 sin2

α

2
− 5

4
u sinα+ 4− 25

16
cos2

α

2
.

As shown in Table 1, Ahn and Kim[2] proposed the approximations bu3 whose error function

ψ has quadruple-zero at both end points, t = 0, 1, and bμ2 triple-zero at both end points and

double-zero at midpoint, t = 1
2 . Our approximation curve b(t) has contact with the circular

arc c at the midpoint. Solving ζ(1/2) = 0, we have two solutions

vi = −
5

3
cos(α/2)− 4

3
u sin(α/2) + (−1)i 8

3



174 S. W. KIM AND Y. J. AHN

Quartic

approximation
zeros of ψ(t) at lim

α→0

dH(q,b)

α8

dH(q,b),
α = π/2

bu3 [2] 0, 0, 0, 0, 1, 1, 1, 1 17−12
√
2

215 ≈ 8.98× 10−7 3.50× 10−5

bμ2 [2] 0, 0, 0, 1
2 ,

1
2 , , 1, 1, 1

27(17−12
√
2)

223 ≈ 9.47× 10−8 3.55× 10−6

b [10] 0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

(
√
2−1)4

219 ≈ 5.61× 10−8 2.03× 10−6

b̃ [12] 0, 0, 1
4 ,

1
2 ,

1
2 ,

3
4 , 1, 1

(1413+399
√
57)(

√
2−1)4

232 ≈ 3.03× 10−8 1.11× 10−6

bu2,2
0, 0, a, 1

2 ,
1
2 , 1− a, 1, 1 (2

√
2−3)2

27 f(b1) ≈ 2.07× 10−8 7.60× 10−7

TABLE 1. The circular arc approximation by quartic Bézier approximations

bu3 , bμ2 , b, and b̃ are proposed by Ahn and Kim[2], Kim and Ahn[10], and

Liu[12]. They have different zeros of error function ψ(t). At the last line,

bu2,2 is presented by our method.

i = 1, 2. If v = vi, then ζ(t) = 4(t− 1/2)2ηi(t) where

η1(t) = (16(cos
α

2
+ 1))(2 sin2

α

4
u2 + 2 sin

α

2
u+ 1 + cos

α

2
)t(t− 1) (2.5)

+4u2 − 2u sinα− (cos
α

2
+ 1)(5 sin

α

2
+ 3)

η2(t) = 26 sin2
α

4
(u cos

α

4
− sin

α

4
)2t(t− 1)

+4u2 − 2u sinα− 4 sin2
α

4
(1− 5 sin2

α

4
). (2.6)

After choosing v = vi the quartic approximation b(t) is depend only on one parameter u. Kim

and Ahn[10] proposed the G2 quartic approximation b with η2(t) having double-zero at the

midpoint, and Liu et al.[12] b̃ with η2(t) having zero at t = 1
4 ,

3
4 .

If u > 0, then the quartic Bézier curve bu(t) is an G1 endpoint interpolation of the circular

arc c(θ). Furthermore, by symmetry, bu(t) have the same curvature at both end points bu(0)
and bu(1). Hence if u > 0, the method of quartic approximation bu(t) of circular arc yields

G2 quartic spline under the subdivision of equal-length of circular arc until the error is less

than tolerance. (Refer to [10, 7].)

3. G2 QUARTIC SPLINE APPROXIMATION OF CIRCULAR WITH ALTERNATION OF ERROR

FUNCTION

LEMMA 3.1. The eighth-degree monic polynomial f(t) = t2(t−1)2(t−1/2)2(t−a)(t− (1−
a)), t ∈ [0, 1] satisfy

||f ||∞ = max
t∈[0,1]

f(t) = − min
t∈[0,1]

f(t) (3.1)

if a = 1
2 ± 1

6

√
6− 4

√
3 + 2

√
6
√√

3− 1.
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FIGURE 2. The eighth-degree monic polynomial f(t) = t2(t − 1)2(t −
1/2)2(t−a)(t−(1−a)), for a = 1

2± 1
6

√
6− 4

√
3 + 2

√
6
√√

3− 1. f(−b) =
max f(x) = −min f(x) = ||f ||∞.

Proof. Solving the equation f ′(t) = 0, the solutions are t = (4 ±
√
12a2 − 20a+ 9 ±√

12a2 − 4a+ 1)/8, 0, 1, 1/2. Put bi = (4−
√
12a2 − 20a+ 9 + (−1)i

√
12a2 − 4a+ 1)/8,

i = 1, 2. The polynomial f(t) has the maximum f(b1) = f(1− b1) and the minimum f(b2) =
f(1 − b2) on [0, 1], if 0 < a < 1

2 or 1
2 < a < 1, as shown in Figure 2. Solving the equation

f(b1) = −f(b2)with respect to a, we obtain two real solution 1
2±1

6

√
6− 4

√
3 + 2

√
6
√√

3− 1.

Any of them satisfies Equation (3.1). �

Numerically, we have a ≈ 0.199 and ||f ||∞ = f(b1) ≈ 9.01× 10−5, as shown in Figure 2.

Solving equation ηi(a) = 0 with respect to u, there are four solutions ui,j , i, j = 1, 2. Since

for u = u1,j , j = 1, 2, the quadratic polynomial η1(t) is

η1(t) = (16(cos
α

2
+ 1))(2 sin2

α

4
u2 + 2 sin

α

2
u+ 1 + cos

α

2
)(t− a)(t− (1− a))

and ‖ψ‖∞ = 210f(b1) + O(α2), the approximation bu1,j , j = 1, 2 has approximation or-

der zero, and so bu1,j could not be a good approximation. Now, we consider two approx-

imations bu2,j , j = 1 and 2 and compare their errors. The two parameters are u2,j =

(ξ1 + (−1)j√ξ2)/2ξ where

ξ = 4a(a− 1) sin2
α

2
+ 1

ξ1 = sin
α

2
(cos

α

2
+ 16a(a− 1) sin2

α

4
) (3.2)

ξ2 = 16 sin6
α

4
(2− (2a− 1)2 sin2

α

4
).
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PROPOSITION 3.2. bu2,2 is better approximation than bu2,1 .

Proof. If u = u2,j , then η2(t) = η2,j(t) is a quadratic polynomial with zero at t = a, 1 − a.

Thus

η2,j(t) = 26 sin2
α

4
(u2,j cos

α

4
− sin

α

4
)2(t− a)(t− (1− a))

and we have

(u2,1 cos
α

4
− sin

α

4
)2 − (u2,2 cos

α

4
− sin

α

4
)2 =

sin α
2 sin

2 α
4 (2 cos

2 α
4 + 1)

√
ξ2

ξ2
≥ 0.

Hence bu2,2 is better approximation than bu2,1 . �

PROPOSITION 3.3. For u = u2,2, the error function is given by

ψ(t) = 210 sin2
α

4
(u2,2 cos

α

4
− sin

α

4
)2t2(t− 1)2(t− 1

2
)2(t− a)(t− (1− a)) (3.3)

and

‖ψ‖∞ = 210 sin2
α

4
(u2,2 cos

α

4
− sin

α

4
)2f(b1) =

(2
√
3− 3)2

26
f(b1)α

8 +O(α10). (3.4)

Proof. Equation (3.3) follows from the equations ψ(t) = 4t2(t − 1)2ζ(t), ζ(t) = 4(t −
1/2)2η2(t), and η2(t) = 26 sin2 α

4 (u2,2 cos
α
4 − sin α

4 )
2(t−a)(t− (1−a)). Since u2,2 cos

α
4 −

sin α
4 =

2
√
2−3
26

α3 +O(α5), we obtain Equation (3.4). �
We present a closed form of dH(q,b) and show that the approximation order of bu2,2 is

eight, as follows.

PROPOSITION 3.4. The Hausdorff distance between the quartic approximation b and the cir-
cular arc c is given by

dH(b, c) = 1−
√
1− 210 sin2

α

4
(u2,2 cos

α

4
− sin

α

4
)2f(b1) (3.5)

and its asymptotic behavior is

dH(b, c) =
(2
√
2− 3)2

27
f(b1)α

8 +O(α10). (3.6)

Proof. Since the range of ψ(t) is [−||ψ||∞, ||ψ||∞], that of
√

ψ(t) + 1− 1 is [
√
1− ||ψ||∞ −

1,
√
1 + ||ψ||∞ − 1]. Thus the Hausdorff distance dH(b, c) between the circular arc c and the

approximation b is

dH(b, c) = max{|
√
1− ||ψ||∞ − 1|, |

√
1 + ||ψ||∞ − 1|}. (3.7)

Since |
√
1− s− 1| ≥ |

√
1 + s− 1| for any real number 0 < s < 1, we have

dH(b, c) = 1−
√
1− 210 sin2

α

4
(u2,2 cos

α

4
− sin

α

4
)2f(b1). (3.8)

Equation (3.6) follows from Equations (3.4)-(3.5). �
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(a) (b)

FIGURE 3. (a) The unit circle(red) and our quartic Bézier approxima-

tion(blue). The dash-lines(blue) are control polygon. The Hausdorff distance

is 4.72× 10−2. (b) The circle(red) of radius 10 and our quartic G2 spline ap-

proximation(blue) using four segment of quartic Bézier curve. At each junc-

tion points the spline curve is curvature-continuous. The Hausdorff distance is

7.60× 10−6.

The Hausdorff distance dH(b, c) between the unit circular arc c of angle α and our quartic

approximation bu2,2 in Equation (3.5) is now depend only on α. Thus we denote the Hausdorff

distance dH(b, c) by ε(α).

4. ALGORITHM AND NUMERICAL EXAMPLES

Using our circle approximation method by quartic Bézier curve, we present a subdivision

algorithm for the quartic G2 spline approximation of the circular arc within the given tolerance

as follows.

Algorithm
1. Input: the radius r and angle φ of circular arc, and tolerance TOL.

2. Find the smallest positive integer k satisfying

rε(
φ

k
) < TOL.

3. Calculate the control points bi of the quartic approximation b(t) for unit

circle using Equations (2.1)-(3.2) for α = φ
k .

4. Output: the control points T jrbi, i = 0, · · · , 4, and j = 0, · · · , k − 1 of

quartic spline approximation, where T is the rotation transformation of angle

α.
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Figure 3(a) shows the unit full circle(red color) and its quartic Bézier approximation(blue

color) using our method. The quartic Bézier curve have the same curvature at the meet point of

start-point and end-point. The control polygon is plotted by dash-lines. The Hausdorff distance

between the circle and the quartic Bézier curve is 4.72× 10−2.

If the radius of circle is given by r = 10 and the error tolerance TOL is 10−5, the algorithm

yields k = 4 and the quartic G2 spline as shown in Figure 3(b). The Hausdorff distance

between the unit circle and quartic spline is 7.60 × 10−6 < TOL. The control points bi of

quartic Bézier approximation of unit circle is obtained from Equations (2.1)-(3.2) and α = π
2 .

All control points of the quartic spline approximation are also obtained from T jrbi, j =
0, · · · , 3 using the rotation transformation T of angle π

2 .

5. COMMENTS AND FUTURE WORK

In this paper we presented a method of circle approximation by quartic spline curve. Our

circle approximation by quartic G2 spline has some merits. Our method has smaller error than

other previous methods of circle approximation by quartic Bézier curve. Also our method

yields a closed form of error and the curvature-continuous quartic spline as previous meth-

ods. As a future work, we will extend the circle approximation by quartic spline to the conic

approximation and surface approximation such as ellipsoid and torus.
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