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ABSTRACT. In this paper, we present a C3 quartic B-spline approximation of circular arcs.
The Hausdorff distance between the C3 quartic B-spline curve and the circular arc is obtained
in closed form. Using this error analysis, we show that the approximation order of our ap-
proximation method is six. For a given circular arc and error tolerance we find the C3 quartic
B-spline curve having the minimum number of control points within the tolerance. The algo-
rithm yielding the C3 quartic B-spline approximation of a circular arc is also presented.

1. INTRODUCTION

The circle approximation is one of the most simple and challenging problems in the field
of CAGD(Computer Aided Geometric Design). If a circular arc is subdivided with the same
length, then all subdivided arcs are congruent. Therefore, if one arc is approximated by a Bézier
curve, then all arcs can be approximated by the same method. This is the reason why the circle
approximation is simple. However, a reduction in the error and an increase in the continuity of
the approximation curve remain as problems to be solved. In the last thirty years, the focus of
the circle approximation has been to find the spline approximation that has the highest possible
orders of approximation and continuity.

Since de Boor [1] showed the existence of the G2 cubic spline approximation of a planar
curve with approximation order six, many studies have been carried out on the circle approxi-
mation using a Bézier or spline curve with a higher order of approximation or continuity. The
methods for the circle or ellipse approximation by a G1 quadratic [2] or Gk cubic spline curve
[3, 4, 5] for k = 1, 2 have been presented with increasingly smaller error. Floater [6, 7] found
a G2 quadratic spline approximation of a conic with approximation order four and a Gn−1

spline approximation of odd degree n of a conic with approximation order 2n, which can be
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approximation order.
† Corresponding author.

151



152 BAE AND AHN

naturally applied to the circle approximation. The approximation methods of a circular arc by
a quartic or quintic spline with approximation order eight or ten and with Gk-continuity for
k = 1, 2, 3 have been developed [8, 9, 10]. The error bound of a quartic Bézier approximation
of a circular arc has been further reduced [11, 12, 13, 14, 15]. Moreover, the circle approxima-
tion using LN(linear normal) Bézier curves has been used to obtain the offset approximation
[16, 17, 18, 19, 20].

The spline approximation of a circular arc is obtained by merging the Bézier approximation
of a segment of the circular arc and its rotations. If the approximate spline is Gk-continuous
at the junction point of two consecutive Bézier segments, the number of control points of the
spline can be reduced by k. Thus, the continuity order of the approximate spline curve is an
important factor. The geometric continuity Gk cannot imply the continuity Ck for k ≥ 2 in
general. Yang and Ye [21] presented aC2 cubic spline approximation of a circular arc, but there
is no C3 spline approximation whose Bézier segments are all congruent in previous works on
circle approximations. This is the motivation of our work. Since anyC3 spline curve composed
of two or more Bézier segments should have a degree of at least four, we present aC3 quartic B-
spline approximation of a circular arc in this paper. The exact form of the Hausdorff distance
between the circular arc and the C3 quartic B-spline approximation is obtained. Using this
Hausdorff distance, we present an algorithm yielding the C3 quartic B-spline approximation
with the smallest number of control points and an error less than a given tolerance.

The C1 quadratic spline approximation of a circular arc can be easily obtained, and it has
approximation order four [2]. Yang and Ye [21] showed that the C2 cubic B-spline approxi-
mation of a circular arc has approximation order four as well. Thus, we are interested in the
approximation order of our C3 quartic B-spline approximation of a circular arc. In this paper,
we show that its approximation order is six, which is a very interesting result.

Our manuscript is organized as follows. In section 2, we find theC3 quartic uniform B-spline
approximation of a circular arc, which is obtained by merging the quartic Bézier approxima-
tion and its rotations. In section 3, we present the Hausdorff distance between the C3 quartic
B-spline approximation and the circular arc in closed form, and prove that it has the approxi-
mation order six. In section 4, the algorithm yielding the C3 quartic B-spline approximation
with the smallest number of control points within the tolerance is obtained. We summarize our
work in section 5.

2. C3 QUARTIC UNIFORM B-SPLINE CURVE APPROXIMATION OF CIRCULAR ARCS

In this section, we find the approximation of a circular arc by a C3 quartic uniform B-spline
curve whose Bézier segments are all congruent.

Let c be the unit circular arc of angle 0 < α < π expressed by

c(θ) = (cos θ, sin θ) for θ ∈ [0, α]
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and p be the quartic Bézier approximation of the circular arc with the control points p0,p1, · · · ,
p4 expressed by

p(t) =
4∑
i=0

piB
4
i (t),

where Bn
i (t) =

(
n
i

)
ti(1 − t)n−i for i = 0, 1, · · · , n is the Bernstein polynomial of degree

n [22, 23]. Since the circular arc is symmetric, the quartic Bézier curve is restricted to be
symmetric. Let b be the spline curve constructed by p and its rotations Rp, R2p, · · · , where
R is the rotation operator by the angle α, and Rip is the rotated curve of p by the angle iα.
Then, the C3-continuity of b at least implies that p is the G1 endpoint interpolation of the
circular arc. Thus, the control points of p are

p0 = (1, 0)

p1 = (1, h)

p2 = r(cos
α

2
, sin

α

2
) (2.1)

p3 = (cosα, sinα) + h(sinα,− cosα)

p4 = (cosα, sinα).

For a given circular arc c of angle ϕ and a given positive integer m, we will construct the
quartic B-spline approximation b by the composition of the quartic Bézier curves p, Rp, R2p,
· · · , Rm−1p, where α = ϕ/m. Consider the continuity of b at each junction point. Two
quartic Bézier curves p and Rp meet at p4 = Rp0 and are symmetric with respect to the line
L passing through the origin and p4, as shown in Fig. 1. The curve b is C2-continuous at p4

if and only if p′′(1) = (Rp)′′(0) or

∆p3 −∆p2 = R(∆p2 −∆p1),

where ∆pi = pi+1 − pi. Its geometric meaning is that the ratio of the distances from p3 and
p2 to the line L is 1 : 2, as shown in Fig. 1, which is equivalent to

r sin
α

2
= 2h. (2.2)

The curve b is C3-continuous at p4 if and only if p′′′(1) = (Rp)′′′(0) or

∆p3 − 2∆p2 +∆p1 = R(∆p2 − 2∆p1 +∆p0).

Its geometric meaning is that the perpendicular foot of p2 to the line L is the internally dividing
point of the two perpendicular feet of p1 and p3 to the lineL in the proportion of 1 : 2, as shown
in Fig. 1, which is equivalent to

cosα+ h sinα = 3r cos
α

2
− 2. (2.3)

Solving the linear system of two equations in Eqs. (2.2)–(2.3), we have

r =
2 + cosα

cos α2 (2 + cos2 α2 )
and h =

tan α
2 (2 + cosα)

2(2 + cos2 α2 )
, (2.4)
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FIGURE 1. The geometric meaning of p′′(1) = (Rp)′′(0) and p′′′(1) = (Rp)′′′(0).

as shown in Fig. 2 and the curve composed of p and Rp can be a C3-continuous curve.

FIGURE 2. h (red) and r (green) for α ∈ (0, 0.9π].

PROPOSITION 2.1. If p(t), t ∈ [0, 1] is the quartic Bézier curve with the control points
p0,p1, · · · ,p4 satisfying Eq. (2.4), then for any positive integerm, the curve b(t), 0 ≤ t ≤ m,
defined by

b(t) =

{
p(t) for t ∈ [0, 1]

R⌊t⌋p(t− ⌊t⌋) for t ∈ (1,m]

is C3-continuous, where ⌊x⌋ is the greatest integer less than x.

For i = 0, 1, · · · ,m − 1, the control points of the quartic Bézier curve Rip are Ripj for
j = 0, 1, · · · , 4. Thus, the C3 curve b(t), t ∈ [0,m] can be represented in the form of a quartic
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FIGURE 3. The quartic Bézier approximation (magenta) p of a quarter circle
(green) and its control polygon (blue) satisfying Eqs. (2.1) and (2.4).

B-spline curve

b(t) =
4m∑
i=0

biN
4
i (t)

with the control points

p0,p1,p2,p3,p4, Rp1, Rp2, · · · , Rm−1p3, R
m−1p4

and the knot vector t = (ti)
4m+5
i=0 satisfying t0 = 0,

t4i+j = i for i = 0, 1, · · · ,m and j = 1, 2, 3, 4,

and t4m+5 = m, where the B-spline basis functions of degree j are defined by

N0
i (t) =

{
1 if ti ≤ t < ti+1

0 otherwise

for i = 0, 1, · · · and

N j
i (t) =

t− ti
ti+j − ti

N j−1
i (t) +

ti+j+1 − t

ti+j+1 − ti+1
N j−1
i+1 (t)

for j = 1, 2, · · · recursively [24, 25]. The domain interval [0,m] and the knot vector t can be
transformed into any interval and a new knot vector by a linear functional.

Since b is C3-continuous and has multiple knots in the domain interior, it can be knot-
removable. Using the reverse process of knot insertion algorithm [26, 27, 28, 29], we can
obtain the C3 quartic uniform B-spline approximation

b(t) =
m+3∑
i=0

biN
4
i (t)
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FIGURE 4. For ϕ = 1.2π and m = 4, the de Boor points b0,b1,b2, · · · ,
bm+3 (green) and the Bézier points p0,p1, · · · ,p4m (blue).

with the new control points

b0 = p0

b1 = p1

b2 = 2p2 − p1

bi =
3

2 + cosα
Ri−2p2 for i = 3, · · · ,m (2.5)

bm+1 = Rm−1(2p2 − p3)

bm+2 = Rm−1p3

bm+3 = Rm−1p4

and the new knot vector t = (ti)
m+8
i=0 satisfying t0 = · · · = t4 = 0,

ti = i− 4 for i = 5, · · · ,m+ 3, (2.6)

and tm+4 = · · · = tm+8 = m.

3. APPROXIMATION ORDER OF C3 QUARTIC B-SPLINE APPROXIMATION
OF CIRCULAR ARC

In this section, we find the Hausdorff distance dH(c,b) between the circular arc c of angle
α and the quartic Bézier approximation b having the control points in Eqs. (2.1) and (2.4),
which is the maximum of

ψ(t) = |∥p(t)∥ − 1| for t ∈ [0, 1]

Using this error function, we obtain the following error analysis.
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FIGURE 5. Error functions ψ(t), t ∈ [0, 1] for α from 3
10π (bottom) to π

2 (top).

PROPOSITION 3.1. The Hausdorff distance dH(c,b) between the circular arc c of angle α and
the quartic Bézier approximation b having the control points in Eqs. (2.1) and (2.4) is

dH(c,b) =
(5− cos α2 )(1− cos α2 )

3

8(cos α2 )(2 + cos2 α2 )
, (3.1)

and its approximation order is six.

Proof. Let ψ1(t) = ∥p(t)∥2 − 1. Then, by Eqs. (2.1) and (2.4), we have

ψ1(t) =
4 sin6 α2

cos2 α2 (2 + cos2 α2 )
2
(t2 − t)2{sin2 α

2
(t2 − t)2 − 2(t2 − t) + 1}

which is a polynomial of degree eight. Since ψ1(t) ≥ 0 for t ∈ [0, 1], we obtain ψ(t) =√
ψ1(t) + 1− 1. It follows from ψ′(t) = 1

2
√
ψ1(t)+1

·ψ′
1(t) that ψ(t) and ψ1(t) have the same

critical points. Since

ψ′
1(t) =

8 sin6 α2
cos2 α2 (2 + cos2 α2 )

2
(2t− 1)(t2 − t){2 sin2 α

2
(t2 − t)2 − 3(t2 − t) + 1}

has seven zeros, 0, 1
2 , 1, and

1

2
± 1

2

√√√√
1 +

3±
√

9− 8 sin2 α2

sin2 α2
,

and the zeros other than 1
2 are not contained in the open interval (0, 1), ψ(t) has a unique

maximum at 1
2 , as shown in Fig. 5, and

dH(c,b) = ψ(
1

2
) =

(5− cos α2 )(1− cos α2 )
3

8(cos α2 )(2 + cos2 α2 )
.
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FIGURE 6. Hausdorff distance dH(c,b) = ε(α) for α ∈ (0, π2 ].

By series extension, we have

dH(c,b) =
1

3 · 210
α6 +O(α8),

which means that the approximation order is six. �

The Hausdorff distance dH(c,b) in Eq. (3.1) is dependent only on the angle α of the circular
arc, as shown in Fig. 6; therefore, we denote it by ε(α).

4. APPROXIMATION ALGORITHM AND NUMERICAL EXAMPLE

For a given circular arc c of angle ϕ and a given tolerance TOL, if dH(c,b) = ε(ϕ) is
greater than TOL, then the circular arc can be approximated by the quartic B-spline curve,
which consists of at least two Bézier segments, i.e., m ≥ 2. Using the error analysis in Eq.
(3.1), we can find the smallest integer m satisfying

ε

(
ϕ

m

)
< TOL.

Letting α = ϕ/m, the quartic uniform B-spline curve b satisfying Eq. (2.5) is a C3 approx-
imation of the circular arc c having an error less than TOL. Now, we present an algorithm
yielding the C3 quartic uniform B-spline approximation b of the circular arc of the angle ϕ
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FIGURE 7. For a full circle (ϕ = 2π) and TOL = 0.005, our algorithm
yieldsm = 5 and the C3 quartic B-spline approximation (magenta) b with the
control polygon (green) b0,b1, · · · ,b8 within the error tolerance.

having the minimum number of control points within the error tolerance TOL as follows.
ALGORITHM

- input : the angle ϕ and tolerance TOL
- find the smallest integer m satisfying ε( ϕm) < TOL

- put α = ϕ
m

- find the control points b0,b1, · · · ,bm+3 by Eq. (2.5)
and the knot vector t = (ti)

m+8
i=0 by Eq. (2.6)

- output : m, b0,b1, · · · ,bm+3, and t = (ti)
m+8
i=0

For example, if a full circle and TOL = 0.005 are given, then this algorithm yields m = 5
and the control points b0,b1, · · · ,b8 of the C3 quartic uniform B-spline approximation b,
as shown in Fig. 7. The exact Hausdorff distance is dH(c,b) = 0.0017. Using the algo-
rithm, Table 1 summarizes the required minimum number of control points of the C3 quar-
tic uniform B-spline approximation of the full circle within the error tolerance for TOL =
10−1, 10−2, · · · , 10−5.

5. CONCLUSION

In this paper, we presented the C3 quartic uniform B-spline approximation of a circular arc.
Since the order of continuity is three, it can reduce the number of control points of the quartic
B-spline curve obtained by merging of the quartic Bézier approximate curve and its rotations,
which is an advantage of our approximation method. Another advantage is that the Hausdorff
distance between any circular arc and its C3 quartic B-spline approximation is obtained in
closed form. Using this closed form, we proved that our quartic B-spline approximation has
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TABLE 1. The required minimum number of control points of the C3 quartic
B-spline approximation of the full circle (ϕ = 2π) within the given tolerance
TOL.

TOL number of control points
10−1 7
10−2 8
10−3 10
10−4 12
10−5 16

the approximation order six. Moreover, we obtained the C3 quartic B-spline approximation
having the minimum number of control points within the error tolerance and the algorithm
yielding the C3 quartic B-spline approximation.
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