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Comparison of Offset Approximation Methods of Conics with 

Explicit Error Bounds
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Abstract

In this paper the approximation methods of offset curve of conic with explicit error bound are considered. The quadratic

approximation of conic(QAC) method, the method based on quadratic circle approximation(BQC) and the Pythagorean

hodograph cubic(PHC) approximation have the explicit error bound for approximation of offset curve of conic. We present

the explicit upper bound of the Hausdorff distance between the offset curve of conic and its PHC approximation. Also

we show that the PHC approximation of any symmetric conic is closer to the line passing through both endpoints of the

conic than the QAC.
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1. Introduction
 

Conic is a widely used curve in CAD/CAM system

or in the field of CAGD (Computer Aided Geometric

Design). The conic can be represented in the rational

quadratic Bézier form[1,2]. The necessary and sufficient

condition of the conic with monotone curvature has

been found[3,4]. Also, the necessary and sufficient con-

dition for the rational cubic or quartic Bézier curve to

be a conic is presented[5,6]. The geometric characteristics

of the rational quadratic Bézier curve including center,

asymptotes, foci, axes and eccentricity are obtained[2,7-10].

Conic can not be represented in Bézier form, and so

it is needed to be approximated when it is used in sys-

tem which admits only polynomial curves. Floater[11,12]

found the G2 quadratic approximation of conic with an

explicit error bound and the Gn-1 spline approximation

of odd degree n ≥ 3 of conic with an explicit error

bound and with the approximation order 2n. Conic is

approximated by G3 quintic spline[13] and G2 quartic

spline[14] with an explicit error bound.

Offset curves of generic conics except for circle or

parabola do not admit rational parameterizations[15] and

are irreducible (non-rational) algebraic curve of degree

eight[15,16]. The offset curve of circle is a circle, and that

of parabola is a rational Bézier curve of degree six

which is shown by Lü[17]. Thus it is an important task

to approximate the offset curve of generic conic by pol-

ynomial or rational curves in CAGD. Early, Farin[18]

presented a G1 endpoint interpolation of offset curve of

conic by conic together with matching an intermediate

tangent. Farouki[15] obtained the conic approximation

interpolating the endpoints, tangents at the endpoints

and parametric midpoint of the offset of conic, and the

exact error analysis.

In this paper we collect three approximation methods

of offset of conic which have explicit error bounds.

They are the quadratic approximation of conic(QAC)

method, the method based on quadratic circle approxi-

mation(BQC) and the Pythagorean hodograph cubic

(PHC) approximation method. We present the error

bound of PHC approximation in a closed form. We

compare them with their error bounds and illustrate that

the best approximation method from the three methods

can be obtained easily by the error bounds. Also, we

show that the PHC approximation is closer to the line

passing through both endpoints of the symmetric conic

than the QAC method.

Our manuscript is constructed as follows. In Section

2, three approximation methods of offset curve of conic

with the explicit error bounds are explained and the
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error bound of PHC approximation is presented in a

closed form. In Section 3, we illustrate that the best

approximation from the three method for each given

conic and given offset distance can be obtained, and our

work is summarized in Section 4. 

2. Offset Approximation Method of Conics

In this section we introduce three methods of offset

approximation of conics by rational Bézier curve which

have the explicit bound of the Hausdorff distance

between the approximation curve and the offset of

conic. 

2.1. Quadratic Approximation of Conics

The G2 quadratic spline approximation of conics is 

founded by Floater[11]. For given conic , 

the quadratic approximation is , where b0, b1,

b2 are control points of the conic, w0=1,w1 > 0,w2=1 are

weights of the conic in standard form, and =

, i = 0,...,n, is the Bernstein polynomial

of degree n. In general this approximation is only G1

endpoint interpolation of conic[19]. But subdivision at

the shoulder point of conic makes the quadratic approx-

imate spline curvature-continuous(G2). This is one of

the merits of Floater’s approximation method. The other

merit is the sharp error bound as follows[11]: the Haus-

dorff distance between the conic b and its quadratic

approximation q is 

. (2.1)

In this paper we call this quadratic approximation

method of conic by QAC. The QAC can be applied to

offset approximation, since quadratic Bézier curve has

rational offset[17]. Lüshowed that the offset curve of any

quadratic Bézier curve can be expressed by rational

Bézier curve of degree six[17]. Thus the offset of the

quadratic Bézier approximation is an approximation of

offset of the conic. Moreover, the quadratic spline

approximation is G2 continuous, so is its offset approx-

imation. If the offset curve of conic, the quadratic

approximation and its offset curve have no cusp, then

the Hausdorff distance is invariant under convolu-

tion[20]. Thus, for the offset distance r∈R, 

(2.2)

where c is a circular arc which is the Gauss map of b

and q, and * means the convolution curve of two com-

patible curves. Thus if the offset curve b*rc has a cusp,

then b should be subdivided at the point where b*rc has

the cusp, and then Equation (2.2) can be applied.

 If the error bound in Equation (2.1) is larger than the

given tolerance TOL, then the conic should be subdi-

vided repeatedly until the error bound is less than the

tolerance. Let Q be the G2 quadratic spline curve which

is the composition curve of the quadratic Bézier approx-

imations obtained by subdivision at shoulder points of

segments of the conic. If Q has n segments, then the

error bound[11] is

(2.3)

where bk,0, bk,1, bk,2, k = 1,...,n, are control points of the

k-th subdivided segment of conic and 1, wn,1, 1 are the

weights of the segment. By elevating the number of

segment n one by one, the minimum required number

of segments within the error tolerance can be obtained. 

2.2. Based on Quadratic Circle Approximation

In this section we explain the offset approximation

based on quadratic circle approximation which was pre-

sented firstly by Lee et al.[21]. This method can be

extended to G2 approximation[20,22]. For given conic b

and offset distance r, its offset curve is b*rc. If the cir-

cular arc c is approximated by quadratic Bézier curve

ca, then the offset curve b*rc is approximated by b*rca

which is a rational Bézier curve of degree six[21]. If these

curves are cusp-free, then the error analysis is obtained

by 

(2.4)

[20] and the Hausdorff distance dH(c,c
a) between circular

arc c of angle θ and its G1 quadratic Bézier approxi-

mation ca can be easily obtained by
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[21,22]. If the error is larger than the given tolerance TOL,

then the conic should be subdivided. If the circular arc

c is subdivided with the same length and each segment

is approximated by the G1 quadratic interpolation ca,

then the composition curve Ca of these G1 quadratic

Bézier curves is G2 approximation of the circular arc

c[11]. Moreover, the offset approximation b*rCa is cur-

vature continuous and 

(2.5)

[21,22] where n is the number of quadratic segments of

Ca.

2.3. PH Cubic Approximation of Conic

Pythagorean hodograph curves are firstly presented

by Farouki and Sakkalis[23]. In this section we explain

Pythagorean hodograph cubic approximation of conic

and present its error bound analysis.

A cubic curve  has a Pythagorean

hodograph(PH) if and only if

 and θ1 = θ2 (2.6)

[23-25], where Δpi = pi−pi-1 for i = 0, 1, 2 and θi =

 for i = 0, 1. The PH cubic curve p(t) is a

G1 endpoint interpolation of the conic b contained in the

(closed) triangle Δb0b1b2 if and only if

for some real numbers δ0, δ1 ∈ (0, 1) satisfying Equa-

tion (2.6). Equation (2.6) holds if and only if 

 and δ0 = λδ1

where . Putting 

+(λ + 1)δ1−1, we have ψ(0) = −1 < 0 and ψ(1) = 4λsin2

, so that the equation ψ(δ1) = 0 has the unique

solution in the open interval (0,1). If |θ2−θ1|≠ , then the

quadratic equation ψ(δ1) = 0 of δ1 has the unique solu-

tion in the open interval (0,1) by

,

(2.7)

and if |θ2−θ1|= , then the linear equation ψ(δ1) = 0 of

δ1 has the solution

. (2.8)

Since , the solution δ1 in Equa-

tions (2.7)-(2.8) is contained in the open interval ,

so that δ0 = λδ1 is also in the open interval (0,1). Hence

the PH-cubic p(t) is contained in the (closed) triangle

Δb0b1b2. Using Floater’s error analysis between conic

and its approximation curve contained the triangle as

(2.9)

where f : R2
→R is defined by f (x, y) = τ1

2
−4w2τ0τ2 and

τ0, τ1, τ2 are the barycentric coordinates of the points (x,

y) with respect to the triangle Δb0b1b2:(x, y) = τ0b0+τ1b1

+τ2b2 with τ0+τ1+τ2 = 1, we present the error bound of

the PH-cubic approximation of conic as follows. 

Proposition 2.1

The Hausdorff distance between a conic and its G1

PH-cubic approximation has the upper bound explicitly

as

where g(t) = t2(1−t)2g1(t) and g1(t) is a quadratic poly-

nomial 
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and t1, t2, t3 are the roots of cubic polynomial 2(1−

2t)g1(t) + t(1−t)g1'(t). 

Proof. Since

we have 

and its derivative is a polynomial of degree five as

.

Since g(t) has the local extrema at t = 0, 1, t1, t2, t3,

the assertion follows. □

3. Comparison of Offset Approximation 
Methods of Conics

In this section we compare three approximation meth-

ods of offset curve of conic, QAC(Qaudratic approxi-

mation of conic) q*rc, BQC(Based on quadratic circle

approximation) b*rca, and PHC(Pythagorean cubic

interpolation) p*rc. They yield the rational Bézier

approximation of degree 6, 6, and 5, and with the

geometric continuity of order two, two, and one, in

order. 

In the first example, b is a conic with control points

b0=(0,0), b1=(2,1), b2=(3,0), and weight w1 = 2, as

shown in Fig. 1. For the offset distance r = −1, b*(−c)

(black color) is the offset curve of b, and QAC q*(−c)

(green), BQC b*(−ca)(magenta) and PHC p*(−c)(blue)

have the error bounds 0.19, 0.02 and 0.52, respectively.

In this case, the method of BQC is the best approxima-

tion, and the upper bound of PHC is overestimated. 

In the second example, an ellipse with control points

b0=(2,0), b1=(2,1), b2=(0,1) and weight w1=1/  is

given. For the offset distance r = 1, the approximation

methods of QAC, BQC and PHC have the error bounds

9.59×10-2, 6.07×10-2, 4.34×10-2, respectively, as shown

in Fig. 2. The PHC method is the best approximation

and is overestimated.

Proposition 3.1

If the conic b(t) is not a line segment with ||b1−

b0||=||b2−b1||, then the PHC p is closer to the line seg-

1

2
------

Table 1. Degree of rational Bézier approximation of offset

curve of conic and order of geometric continuity

QAC BQC PHC

Degree of rational Bézier 

approximation

6 6 5

Order of geometric 

continuity

2 2 1

Fig. 1. The hyperbola(black) with w1= 2 and offset distance

r = −1, and its approximations, QAC(q*−c, green), BQC
(b*−ca), magenta), and PHC(p*−c, blue).

Fig. 2. Ellipse(black) with control points b0, b1, b2, its

offset curve(b*c, black) with offset distance r = 1, and the

approximation methods by QAC(q*c, green), BQC(b*ca,

magenta) and PHC(p*c, blue).
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ment b0b2 than the QAC q.

Proof. Let θ be the angle . The quadratic

Bézier curve q(t) can be expressed in cubic Bézier form 

where q0=b0, , , q3=b2. Since

||b1−b0||=||b2−b1||, . Since ||b1−q1||=

||b1−q2||= ||Δq0||= ||Δq2|| and θ < π, we have ||Δq1||<

||b1−q1||+||b1−q2||=||Δq0||=||Δq2|| and ||Δq1||
2<||Δq0|| · ||Δq2||.

The two lines q1q2 and p1p2 are parallel to the line b0b2.

Since ||Δp1||
2=||Δp0|| · ||Δp2||, the line p1p2 is closer to the

line b0b2 than the line q1q2, so that the PHC p is closer

to the line p1p2 than the QAC   q. □

In the third example, for given ellipse  and

for offset distance , we find the best

approximation among three methods, QAC, BQC and

PHC. For , the BQC method( ) has

the smallest error bound, and for , the PHC

method( ) is the best approximation even if it

is overestimated. Since the error of BQC method

depends on the offset distance r, linearly, and the error

bound of PHC method is constant which is independent

of r, if r is larger than two, then PHC has smaller error

bound than BQC. For , the offset curve has

cusp, so that the Equations (2.2) and (2.4) cannot be

applied. The error of each approximation method is

obtained by complicatedly. The BQC method(b*( ),

b*(−ca)) has the smallest error, as shown in Fig. 3.

4. Conclusions

The contribution of this paper as follows. We pre-

sented the explicit upper bound of the Hausdorff dis-

tance between the offset curve of conic and its PHC

approximation. So, the comparison of three approxima-

tion methods, QAC, BQC and PHC which all have the

error bounds in closed form can be possible. Also we

showed that the PHC approximation of any symmetric

conic is closer to the line b0b2 than the QAC method.

We illustrated that the best approximation for each

given conic and given offset distance can be obtained

simply.
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