• Title/Summary/Keyword: current structure

Search Result 6,961, Processing Time 0.032 seconds

Fabrication of the LDD Structure poly-Si TFT with Excimer Laser Recrystallization Process (Excimer laser로 재결정화한 LDD구조의 poly-Si TFT 제작)

  • 정준호;박용해
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.324-331
    • /
    • 1995
  • The leakage current characteristics of the low temperature processed LDD structure poly-Si TFT is analyzed. The excimer laser technology was applied to the recrystallization process of poly-Si film and the maximum processing temperature was retained under 600.deg.C. From the fabricated LDD space 0.3.mu.m to 3$\mu$m, the best on/off current ration could be obtained with the 1.3$\mu$m LDD space. And the threshold voltage did not increase more than 4V over 0.8$\mu$m LDD space. The characteristics of leakage current was compared to non-LDD structure TFT to analyze the mechanism of leakage current. Consequently, it could be concluded that the leakage current is strongly affected by the trap states as well as high electric field between gate and drain.

  • PDF

Design of Variable Structure Current Controller for Induction Motor Olives (유도전동기 구동시스템을 위한 가변구조 전류제어기의 설계)

  • Cha, Jung-Hwa;Noh, Young-Nam;Jeon, Hee-Jong;Park, Jong-Chan;Son, Jin-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1954-1956
    • /
    • 1997
  • In this paper, a variable structure current control scheme for field-oriented induction motor drive is presented. The current controller based on space voltage vector PWM scheme consists of feedforward, decouple and variable structure control. The proposed current controller tracks reference value quickly, has robust property against parameter variation and disturbance, reduces switching frequency and improves performance of induction motor drive. Finally, the proposed current controller is verified by digital simulation

  • PDF

A 6-bit 3.3GS/s Current-Steering DAC with Stacked Unit Cell Structure

  • Kim, Si-Nai;Kim, Wan;Lee, Chang-Kyo;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.270-277
    • /
    • 2012
  • This paper presents a new DAC design strategy to achieve a wideband dynamic linearity by increasing the bandwidth of the output impedance. In order to reduce the dominant parasitic capacitance of the conventional matrix structure, all the cells associated with a unit current source and its control are stacked in a single column very closely (stacked unit cell structure). To further reduce the parasitic capacitance, the size of the unit current source is considerably reduced at the sacrifice of matching yield. The degraded matching of the current sources is compensated for by a self-calibration. A prototype 6-bit 3.3-GS/s current-steering full binary DAC was fabricated in a 1P9M 90 nm CMOS process. The DAC shows an SFDR of 36.4 dB at 3.3 GS/s Nyquist input signal. The active area of the DAC occupies only $0.0546mm^2$ (0.21 mm ${\times}$ 0.26 mm).

A Study on the Numerical Model of Wave Induced Current around Nearshore Structure (연안역 구조물 주위에서의 해빈류의 수치해석에 관한 연구)

  • 민병형;이상화;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.55-63
    • /
    • 1991
  • This study is to predict accurately the wave induced current accuring by the radiation stress which acts as the driving force around Nearshore structure. For the wave induced current, the depth integrated and time averaged governing equation of an unsteady nonlinear form is derived from the continuity and momentum equation of an incompressible fluid. Numerical solutions are obtained by a finite difference method for the governing equation. In the vicinity of a structure, computed flow patterns show good agreement with the hydraulic experimental data. The numerical results obtained by neglecting the convective term show a large change of alongshore and offshore current.

  • PDF

A simple Model for Separation of the Tsushima Current Stream Core by the Tsushima Island: a small viscosity limit

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.38 no.2
    • /
    • pp.45-51
    • /
    • 2003
  • Recent observations reveal that the Tsushima Current has a double-cored structure downstream of the Tsushima Island. To explain this, a simple analytical model is proposed based on the assumption of small lateral eddy viscosity. This model suggests that an otherwise uniform current becomes to have a stream core immediately after it enters a channel due to the action of lateral friction. The core is initially broad but becomes sharper downstream. The speed at which the core develops depends on the intensity of lateral eddy viscosity. Likewise, a single-cored stream changes rapidly to a double-cored stream when it passes through an island located in the center of the channel. When the stream leaves the island behind, the reverse process from the double-to single-cored structures takes place. In this case, however, the double-cored structure is retained for a significant distance from the island. Overall, this model suggests that the double-cored structure of the Tsushima Current observed downstream of the Tsushima Island Is created by the lateral friction exerted by the Tsushima Island.

Innovative step-up direct current converter for fuel cell-based power source to decrease current ripple and increase voltage gain

  • Salary, Ebrahim;Falehi, Ali Darvish
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.695-707
    • /
    • 2022
  • As for the insufficient nature of the fossil fuel resources, the renewable energies as alternative fuels are imperative and highly heeded. To deliver the required electric power to the industrial and domestic consumers from DC renewable energy sources like fuel cell (FC), the power converter operates as an adjustable interface device. This paper suggests a new boost structure to provide the required voltage with wide range gain for FC power source. The proposed structure based on the boost converter and the quazi network, the so-called SBQN, can effectively enhance the FC functionality against its high operational sensitivity to experience low current ripple and also propagate voltage and current with low stress across its semiconductors. Furthermore, the switching power losses have been decreased to make this structure more durable. A full operational analysis of the proposed SBQN and its advantages over the conventional and famous structures has been compared and explained. Furthermore, a prototype of the single-phase converter has been constructed and tested in the laboratory.

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

The effect of field-line twist on the dynamic nature and electric current structure of emerging magnetic field on the Sun

  • An, Jun-Mo;Magara, Tetsuya;Lee, Hwan-Hee;Kang, Ji-Hye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.87.1-87.1
    • /
    • 2012
  • We use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emergence of magnetic field is considered as one of the key physical process producing solar activity such as flares, jets, and coronal mass ejections. To understand these activities we have to know dynamic nature and electric current structure provided by emerging magnetic field. To demonstrate dynamic nature of field lines, we focus on the factors such as curvature of magnetic field line and scale height of magnetic field strength. These factors show that strong twist case forms two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state. For weak twist case, it still shows two-part structure but the tendency becomes weaker than strong twist case. We discuss how the curvature distribution affects the dynamic nature of emerging magnetic field. We also investigate electric current distribution provided by emerging field lines to show a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

Single-silicon TFT Structure for Kink-effect Suppression with Symmetric Dual-gate by Three Split floating N+ Zones (Kink-effect 개선을 위한 세 개의 분리된 N+ 구조를 지닌 대칭형 듀얼 게이트 단결정 TFT 구조에 대한 연구)

  • Lee, Dae-Yeon;Hwang, Sang-Jun;Park, Sang-Won;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.423-430
    • /
    • 2005
  • In this paper, we have simulated a Symmetric Dual-gate Single-Si TFT which has three split floating $n^{+}$ zones. This structure reduces the kink-effect drastically and improves the on-current. Due to the separated floating $n^{+}$ zones, the transistor channel region is split into four zones with different lengths defined by a floating $n^{+}$ region. This structure allows an effective reduction of the kink-effect depending on the length of two sub-channels. The on-current of the proposed dual-gate structure is 0.9 mA while that of the conventional dual-gate structure is 0.5 mA at a 12 V drain voltage and a 7 V gate voltage. This results show a $80 {\%}$ enhancement in on-current by adding two floating $n^{+}$ zones. Moreover we observed the reduction of electric field In the channel region compared to conventional single-gate TFT and the reduction of the output conductance in the saturation region. In addition we also confirmed the reduction of hole concentration in the channel region so that the kink-effect reduces effectively.

Structure and Characteristics of Diffusion Flaame behind a Bluff-body in a Divergent Flow(II) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 2)

  • ;;Lee, Joong Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2981-2994
    • /
    • 1995
  • In order to elucidate the effects of positive pressure gradient on flame properties, structure and stabilization, an experimental study is made on turbulent diffusion flame stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. In this paper, stabilization, characteristics and flame structure are examined by varying the divergent angle of duct. Temperature, ion current and Schlieren photographs were measured. It is found that critical divergent angle is expected to be about 8 ~ 12 degree through blow-off velocity pattern to divergent angle and the positive pressure gradient influences the flame temperature, intensity of ion current and eddy structure behind the rod. With the increase of divergent angle, typical temperature of recirculation zone is low but intensity of ion current is high in shear layer behind rod. Energy distributions of fluctuating temperature and ion current signals turn up low frequency corresponding to large scale eddies but high frequency corresponding to small scale eddies as well as low with the increase of divergent angle. Therefore the flame structure becomes a typical distributed-reacting flame.