• Title/Summary/Keyword: current mode signal processing

Search Result 59, Processing Time 0.032 seconds

Design of Current-to-Voltage Converter for the Current-mode FFT LSI in 0.35um processing (0.35um 공정에서 OFDM 용 전류모드 FFT LSI를 위한 I-V Converter 설계)

  • Bae, Seong-Ho;Hong, Sun-Yang;Jeon, Seong-Yong;Kim, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.469-472
    • /
    • 2007
  • 최근 많은 광대역 유무선 통신 응용분야에서 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 표준기술로 채택하고 있다 OFDM 방식의 고속 무선 데이터 통신를 위한 FFT 프로세서는 일반적으로 DSP(Digital Signal Processing)로 구현되었으나, 큰 전력 소비를 필요로 한다. OFDM의 단점인 전력문제를 보안하기 위해서 Current-mode FFT LSI가 제안되었다. 본 논문에서는 Current-mode FFT LSI의 구현을 위한 저전력 IVC를 설계하였다. 설계된 IVC는 FFT Block의 출력이 $13.65{\mu}A$ 이상일 때에 3V 이상의 전압을 출력하고, FFT Block의 출력이 $0.15{\mu}A$ 이하일 때에 0.5V 이하의 전압을 출력한다. 그리고 IVC의 총 소모전력은 약 1.65mW이다. $0.35{\mu}A$ 공정에서의 저전력 IVC를 설계함으로서, $0.35{\mu}A$ 공정에서의 Current-mode FFT LSI의 설계가 가능해졌다. 저전력 OFDM 통신용 Current-mode FFT LSI는 무선통신의 발전에 기여할 것으로 전망한다.

  • PDF

Design of Voltage to Current Converter for current-mode FFT LSI (전류모드 FFT LSI용 Voltage to Current Converter 설계)

  • Kim, Seong-Gwon;Hong, Sun-Yang;Jeon, Seon-Yong;Bae, Seong-Ho;Jo, Seung-Il;Lee, Gwang-Hui;Jo, Ha-Na
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.477-480
    • /
    • 2007
  • 저전력 OFDM(orthogonal frequency division multiplexing) 시스템용 FFT(Fast-Fourier-Transform) LSI를 저전력 동작을 시키기 위해서 FFT LSI는 current-mode 회로로 구현되었다. Current-mode FFT LSI에서, VIC(Voltage-to-current converter)는 입력 전압 신호를 전류로 바꾸는 first main device이다. 저전력 OFDM을 위해 FFT LSI와 VIC가 한 개의 칩과 결합되는 것을 고려하면, VIC는 전력 손실은 낮고, VIC와 FFT LSI 사이에서의 DC offset 전류는 최소인 작은 크기의 chip으로 설계되어야 한다. 본 논문에서는 새로운 VIC를 제안한다. 선형 동작구간을 넓히고 DC offset 전류를 대폭 감소하는 방법을 제시하였다. VIC는 0.35[um] CMOS process로 구현되었으며, 시뮬레이션 결과에 따르면 제안된 VIC는 current-mode FFT LSI와 0.1[uA] 미만의 매우 작은 DC offset 전류, 1.4[V]의 넓은 선형구간을 갖으며, 저전력으로 동작한다.

  • PDF

Design of a Current-Mode CCII-Based Bandpass Filter from Immittance Function Simulator using Commercial Available CCII (AD844)

  • Prakobnoppakao, Songphan;Chipipop, Boonruk;Surakampontorn, Wanlop;Watanabe, Kenzo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.743-746
    • /
    • 2002
  • This paper proposes the design of a current-mode CCII-based 2$\^$nd/ _order bandpass biquad filter from a grounded series capacitor and frequency-dependent negative conductor ( C-D ) immittance function simulator using the macro model of a commercial available CCII+, AD844, from Analog Devices, Inc. The results are compared with the other results those are designed using ideal model of CCII-. The gain and phase deviations; due to the effects of passive sensitivity, active sensitivity, gain sensitivity and component variability; are considered using Monte-Carlo analysis of PSpice program.

  • PDF

Cell array multiplier in GF(p$^{m}$ ) using Current mode CMOS (전류모드 CMOS를 이용한 GF(P$^{m}$ )상의 셀 배열 승산기)

  • 최재석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, a new multiplication algorithm which describes the methods of constructing a multiplierover GF(p$^{m}$ ) was presented. For the multiplication of two elements in the finite field, the multiplication formula was derived. Multiplier structures which can be constructed by this formula were considered as well. For example, both GF(3) multiplication module and GF(3) addition module were realized by current-mode CMOS technology. By using these operation modules the basic cell used in GF(3$^{m}$ ) multiplier was realized and verified by SPICE simulation tool. Proposed multipliers consisted of regular interconnection of simple cells use regular cellular arrays. So they are simply expansible for the multiplication of two elements in the finite field increasing the degree m.

  • PDF

Design of A 3V CMOS Lowpass Filter Using the Improved Continuous-Time Fully-Differential Current-Mode Integrator (개선된 연속시간 Fully-Differential 전류모드 적분기를 이용한 3V CMOS 저역필터 설계)

  • 최규훈;방준호;조성익
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.685-695
    • /
    • 1997
  • In this paper, a new CMOS continuous-time fully-differential current-mode integrator is proposed as a basic building block of the low-voltage high frequency current-mode active filter. The proposed integrator is composed of the CMOS complementary circuit which can extend transconductance of an integrator. Therefore, the unity gain frequency which is determined by a small-signal transconductance and a MOSFET gate capacitance can be expanded by the complementary transconductance of the proposed integrator. And also the magnitude of pole and zero are increased. The unity gain frequency of the proposed integrator is increased about two times larger than that of the conventional continuous-time fully-differential integrator with NMOS-gm. These results are verified by the small signal analysis and the SPICE simulation. As an application circuit of the proposed fully-differential current-mode integrator, the three-pole Chebyshev lowpass filter is designed using 0.8.$\mu$m CMOS processing parameters. SPICE simulation predicts a 3-dB bandwidth of 148MHz and power dissipation of 4.3mW/pole for the three-pole filter with 3-V power supply.

  • PDF

Four Quadrant CMOS Current Differentiated Circuit

  • Parnklang, Jirawath;Manasaprom, Ampaul;Ukritnukul, Anek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.948-950
    • /
    • 2003
  • In this literature, the CMOS current mode fout quadrant differentiator circuit is proposed. The implementation is base on an appropriate input stage that converts the input current into a compressed voltage at the input capacitor ($C_{gs}$) of the CMOS driver circuit. This input voltage use as the control output current which flow to the output node by passing through a MOS active load and use it as the feedback voltage to the input node. Simulation results with level 49 CMOS model of MOSIS are given to demonstrate the correct operation of the proposed configuration. But the gain of the circuit is too low so the output differentiate current also low. The proposed differentiator is expected to find several applications in analog signal processing system.

  • PDF

PSPICE Modeling of Commercial ICs for Switch-Mode Power Supply (SMPS) Design and Simulation

  • Yi, Yun-Jae;Yu, Yun-Seop
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.74-77
    • /
    • 2011
  • PSPICE modeling of a commercial LED driver IC (TOP245P) and PC817A optocoupler is proposed for the switch-mode power supply (SMPS) (applicable to LED driver) design and simulation. An analog behavioral model of the TOP245P IC including the shunt regulator, under-voltage(UV) detection, over-voltage(OV) shut-down and SR flip-flop is developed by using PSPICE. The empirical equation of PC817A current transfer ratio (CTR) is fitted from the datasheet of PC817A. Two types of SMPSs are simulated with the averaged-model and switching-model. The simulation results by the proposed PSPICE models are in good agreement with those in the data sheet and an experimental data.

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Design of an 8 bit CMOS low power and high-speed current-mode folding and interpolation A/D converter (8비트 저전력 고속 전류구동 폴딩.인터폴레이션 CMOS A/D 변환기 설계)

  • 김경민;윤황섭
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.58-70
    • /
    • 1997
  • In this paper, an 8bit CMOS low power, high-speed current-mode folding and interpolation A/D converter is designed with te LG semicon $0.8\mu\textrm{m}$ N-well single-poly/double-metal CMOS process to be integrated into a portable image signal processing system such as a digital camcoder. For good linearity and low power consumption, folding amplifiers and for high speed performance of the A/D converter, analog circuitries including folding block, current-mode interpolation circuit and current comparator are designed as a differential-mode. The fabricated 8 bit A/D converter occupies the active chip area of TEX>$2.2mm \times 1.6mm$ and shows DNL of $\pm0.2LSB$, INL of <$\pm0.5LSB$, conversion rate of 40M samples/s, and the measured maximum power dissipation of 33.6mW at single +5V supply voltage.

  • PDF

A fully-differential bipolar current-controlled current amplifier(CCCA) (완전-차동형 바이폴라 전류-제어 전류 증폭기(CCCA))

  • 손창훈;임동빈;차형우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.289-292
    • /
    • 2001
  • A Novel fully-differential bipolar current-controlled current amplifier(CCCA) for electrically tunable circuit design at current-mode signal processing were designed. The CCCA was consisted of fully-differential subtracter and fully-differential current gain amplifier. The simulation result shows that the CCCA has current input impedance of 0.5 Ω and a good linearity. The CCCA has 3-dB cutoff frequency of 20 MHz for the range over bias current 100$mutextrm{A}$ to 20 ㎃. The power dissipation is 3 mW.

  • PDF