• Title/Summary/Keyword: current amplifier

Search Result 611, Processing Time 0.031 seconds

A current sense amplifier for low-voltage and high-speed SRAM (저전압 SRAM 의 고속동작을 위한 전류감지 증폭기)

  • Park, Hyun-Wook;Shim, Sang-Won;Chung, Yeon-Bae
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.727-730
    • /
    • 2005
  • In this paper, we propose a new current sense amplifier for low-voltage, high-speed SRAM. As a supply voltage is reduced, a sensing delay is increased owing to reduced cell read current. It causes a low-speed operation in SRAM. To overcome this problem, we present a new current sense amplifier which consists of the current-mirror type circuit with feedback structure. For demonstration, a 0.8-V, 256-Kb SRAM incorporating the proposed current sense amplifier has been designed with $0.18-{\mu}m$ CMOS technology. The simulation results show 15.6ns of the sensing delay reduction in comparison with a previous current sense amplifier and 11.5ns of the sensing delay reduction in comparison with a voltage sense amplifier.

  • PDF

The Parameter Optimization of Current Amplifier with GA (GA를 이용한 전류 앰프의 파라미터 최적화)

  • Yang, J.H.;Jeong, H.H.;Kim, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.147-152
    • /
    • 2006
  • The current type amplifier is the device that is used for an actuator as the motor's torque controller. However, it is too difficult to select the parameter value that has the desired output because the current type amplifier's transfer function is too complex. This study concern about the design of the current type amplifier with the desired output. From the modeled transfer function of the current type amplifier, the optimal parameter values of the transfer function can be selected in order to have the desired output using the Real Coded Genetic Algorithm(RCGA). The real circuit is made with the selected parameter value. The step response of the real circuit is in good agreement with the desired step response.

  • PDF

Wide-bandwidth SQUID Current Amplifier and Control Electronics for X-ray Microcalorimeter (X-선 미소열량계 신호 검출을 위한 광대역 SQUID 전류증폭기와 조절 회로)

  • 김진목;이용호;권혁찬;김기웅;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • Wide-bandwidth SQUID current amplifier and its control electronics have been constructed for detecting pulse outputs of a superconducting microcalorimeter. The current amplifier made of a double relaxation oscillation SQUID (DROS) has a bandwidth of 1.2 MHz and typical white noise level of about 6 pA/(equation omitted) Hz. To increase the dynamic range of the current amplifier, the flux-locked loop (FLL) has additional circuits to reset the integrator and to count reset numbers which present the number of passed flux quanta. In this system, dynamic range covers from -65 mA to +65 mA. SQUID electronics are controlled by software to get the optimum FLL condition, and to control the current to bias the transition edge sensor (TES). The electronics are shielded from the outside electromagnetic noises by using an aluminum case of 66 mm ${\times}$ 25 mm ${\times}$ 100 mm, and consist of 2 separate printed-circuit-boards for the current amplifier and the control electronics, respectively. The SQUID current amplifier and its control electronics will be used in TESs for detecting photons such as UV and X-ray with high energy resolution.

  • PDF

Current Controlled Class-D Stereo Amplifier Using Three-Phase Full Bridge (3상 풀 브리지를 이용한 전류제어형 D급 스테레오 앰프)

  • 송권일;윤인국;오덕진;김희준
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.13-16
    • /
    • 2000
  • This paper presents a simple class-D stereo amplifier using 3-phase full bridge circuit configurations which is controlled by a new current control switching method. Although this class-D amplifier has an only one current control loop with the proposed switching method, a good performance can be obtained. In this paper, a strategy for driving stereo signal amplifier with 3-phase full bridge is discussed. With the experimental results, usefulness of the proposed amplifier is confirmed.

  • PDF

A fully-differential bipolar current-controlled current amplifier(CCCA) (완전-차동형 바이폴라 전류-제어 전류 증폭기(CCCA))

  • 손창훈;임동빈;차형우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.289-292
    • /
    • 2001
  • A Novel fully-differential bipolar current-controlled current amplifier(CCCA) for electrically tunable circuit design at current-mode signal processing were designed. The CCCA was consisted of fully-differential subtracter and fully-differential current gain amplifier. The simulation result shows that the CCCA has current input impedance of 0.5 Ω and a good linearity. The CCCA has 3-dB cutoff frequency of 20 MHz for the range over bias current 100$mutextrm{A}$ to 20 ㎃. The power dissipation is 3 mW.

  • PDF

High performance and low power sense amplifier design for SONOS flash memory (SONOS 플래시 메모리용 저전력 고성능 Sense amplifier 설계)

  • Jung Jin-Gyo;Jung Young-Wook;Jung Xong-Ho;Kwack Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.469-472
    • /
    • 2004
  • In this paper a current mode sense amplifier suitable for 30nm SONOS flash memories read operation is presented. The proposed sense amplifier employs cross coupled latch type circuit and current mirror to amplify signal from selected memory cell. This sense amplifier provides fast response in low voltage and low current dissipation. Simulation results show the sensing delay time and current dissipation for power supply voltages Vdd to expose limitations of the sense amplifier in various operating conditions.

  • PDF

A 170㎼ Low Noise Amplifier Using Current Reuse Gm-boosting Technique for MedRadio Applications (전류 재사용 Gm-boosting 기술을 이용한 MedRadio 대역에서의 170㎼ 저잡음 증폭기)

  • Kim, InSoo;Kwon, Kuduck
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • This paper proposes a 401MHz-406MHz low noise amplifier for MedRadio applications. The proposed low noise amplifier adopts a common gate amplifier topology using current reuse gm-boosting technique. The proposed low noise amplifier shows better performance of voltage gain and noise figure than the conventional gm-boosted common gate amplifier in the same power consumption. The proposed current-reuse gm-boosted low noise amplifier achieves a voltage gain of 22 dB, a noise figure of 2.95 dB, and IIP3 of -17 dBm while consuming $170{\mu}W$ from a 0.5 V supply voltage in $0.13{\mu}m$ CMOS process.

Proposal of the Current Mirror for the Circuit Design of CMOS Operational Amplifier (CMOS연산 증폭기 설계를 위한 전류 미러 제안)

  • ;;;;司空石鎭
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.13-20
    • /
    • 2001
  • In this appear, we proposed the new current mirror has large output resistance and excellent current matching characteristics. If supply voltage were lowered under the conventional CMOS operational amplifier, the wing of out put power could be restricted. So, the paper suggests a new way of differential operational amplifier circuit to solve the problem. The paper proposes that a new current mirror increases output swing and has a stable operation. We compare and verify characteristics of the proposed current mirror with the cascoded current mirror and the regulated current mirror through simulation.

  • PDF

A current-controlling transadmittance amplifier application to FDNR (전류-제어 트랜스어드미턴스 증폭기와 그것을 이용한 FDNR의 설계)

  • 박지만;정원섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.12
    • /
    • pp.104-109
    • /
    • 1996
  • A current-controlling transadmittance amplifier is proposed. It consists of a linear transadmittor and a current gain cell followed by three current mirrors. The proposed transadmittance amplifier is used to design a current-controlling frequency-dependent negative resistor (FDNR). Experimental results are presented to verify theoretical predictions. The results show close agreement between predicted behaviour and experimental performance.

  • PDF

High-Efficiency CMOS Power Amplifier Using Uneven Bias for Wireless LAN Application

  • Ryu, Namsik;Jung, Jae-Ho;Jeong, Yongchae
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.885-891
    • /
    • 2012
  • This paper proposes a high-efficiency power amplifier (PA) with uneven bias. The proposed amplifier consists of a driver amplifier, power stages of the main amplifier with class AB bias, and an auxiliary amplifier with class C bias. Unlike other CMOS PAs, the amplifier adopts a current-mode transformer-based combiner to reduce the output stage loss and size. As a result, the amplifier can improve the efficiency and reduce the quiescent current. The fully integrated CMOS PA is implemented using the commercial Taiwan Semiconductor Manufacturing Company 0.18-${\mu}m$ RF-CMOS process with a supply voltage of 3.3 V. The measured gain, $P_{1dB}$, and efficiency at $P_{1dB}$ are 29 dB, 28.1 dBm, and 37.9%, respectively. When the PA is tested with 54 Mbps of an 802.11g WLAN orthogonal frequency division multiplexing signal, a 25-dB error vector magnitude compliant output power of 22 dBm and a 21.5% efficiency can be obtained.