• Title/Summary/Keyword: cucumis melo

Search Result 180, Processing Time 0.021 seconds

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

The Effects of Phosphate Starvation on the Activities of Acid and Alkaline Phosphatase, Fructose-1,6-bisphosphatase, Sucrose-phosphate Synthase and Nitrate Reductase in Melon (Cucumis melo L.) Seedlings

  • Kang, Sang-Jae;Lee, Chang-Hee;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Plants response to phosphate starvation include the changes of activity of some enzymes, such as phosphatases, fructose-1,6-bisphosphatase, sucrose-phosphate synthase and nitrate reductase. In this study, to determine the effects of phosphate starvation on the change of activities of acid and alkaline phosphatase, fructose-1,6-bisphosphatase, sucrose-phosphate synthase, and nitrate reductase were studied in melon seedlings (Cucumis melo L.). The content of the protein and chlorophyll tended to relatively reduced in melon seedlings subjected to phosphate starvation. Acid phosphatase activity in first and second leaves of melon seedlings was relatively higher than that of third and fourth leaves of seedlings in 14 days after phosphate starvation treatment, respectively. Active native-PAGE band patterns of acid phosphatase in melon leaves showed similar to activities of acid phosphatase, whereas alkaline phosphatase activity was different from the change in the activity of acid phosphatase. Inorganic phosphate content in melon seedlings leaves was constant. The changes of Fructose-1,6-bisphosphatase and sucrose phosphate synthase activities showed similar patterns in melon seedlings leaves, and between these enzymes activities and phosphate nutrition negatively related. Fructose-1,6- bisphosphatase and sucrose phosphate synthase activities showed significant difference in second and fourth leaves, but nitrate reductase showed significant difference in first and second leaves in 14days after phosphate starvation treatment. We concluded that phosphate nutrition could affect the distribution of phosphate, carbon and nitrogen in melon seedlings.

The Effects of Calcium Nutrition on the Activities of Lactate Dehydrogenase, Alcohol Dehydrogenase and Other Enzymes in Melon (Cucumis melo L.) Seedlings Subjected to Flooding

  • Lee, Chang-Hee;Park, Man;Kang, Sang-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • With transient flooding followed by poor or slow drainage plant roots may become reduction conditions because the root zone was fully filled with water. This study was examined the effects of calcium treatment in the early growth stage on biochemical changes in leaves and roots of melon (Cucumis melo L.) seedlings kept under flooding condition for 72 h. The activities of lactate dehydrogenase more gradually enhanced in the roots than those of leaves of melon seedlings treated with calcium. The activities of alcohol dehydrogenase associated with alcohol fermentation under low oxygen conditions continuously increased in the leaves and roots of seedlings untreated with calcium under flooding at least 72 h but those was constant within at least 12 h in treated with calcium. These results showed that calcium supplying in the early growth stage mitigated alcohol fermentation of melon seedlings kept under flooding condition for 72 h. Activities of nitrate reductase and acid phosphatase in the leaves and roots of seedlings in treated with calcium somewhat higher than those of non-treated with calcium. The activities of sucrose phosphate synthase and fructose-1,6-bisphosphatase of leaves of seedlings in treated with calcium more higher than those of non-treated with calcium. These results indicated that calcium nutrition mitigate the reduction of activities of some enzymes of melon seedling kept under flooding condition for 72 h.

Identification and Characterization of the Causal Organism of Gummy Stem Blight in the Muskmelon (Cucumis melo L.)

  • Choi, In-Young;Choi, Jang-Nam;Choi, Dong-Chil;Sharma, Praveen Kumar;Lee, Wang-Hyu
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.166-170
    • /
    • 2010
  • Gummy stem blight is a major foliar disease of muskmelon (Cucumis melo L.). In this study, morphological characteristics and rDNA internal transcribed spacer (ITS) sequences were analyzed to identify the causal organism of this disease. Morphological examination of the Jeonbuk isolate revealed that the percentage of monoseptal conidia ranged from 0% to 10%, and the average length $\times$ width of the conidia was 70 ($\pm$ 0.96) $\times$ 32.0 ($\pm$ 0.15) ${\mu}m$ on potato dextrose agar. The BLAST analysis showed nucleotide gaps of 1/494, 2/492, and 1/478 with identities of 485/492 (98%), 492/494 (99%), 491/494 (99%), and 476/478 (99%). The similarity in sequence identity between the rDNA ITS region of the Jeonbuk isolate and other Didymella bryoniae from BLAST searches of GenBank was 100% and was 95.0% within the group. Nucleotide sequences of the rDNA ITS region from pure culture ranged from 98.2% to 99.8%. Phylogenetic analysis with related species of D. bryoniae revealed that D. bryoniae is a monophyletic group distinguishable from other Didymella spp., including Ascochyta pinodes, Mycosphaerella pinodes, M. zeae-maydis, D. pinodes, D. applanata, D. exigua, D. rabiei, D. lentis, D. fabae, and D. vitalbina. Phylogenetic analysis, based on rDNA ITS sequence, clearly distinguished D. bryoniae and Didymella spp. from the 10 other species studied. This study identified the Jeonbuk isolate to be D. bryoniae.

Effects of ventilation systems and set point temperature of single-span plastic greenhouse on disease incidence, fruit quality and yield of oriental melon (Cucumis melo L.) (참외재배 단동 비닐하우스의 환기방법과 설정온도가 병발병도,과실 수량 및 품질에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Choi, Gyeong-Lee;Lee, Seong-Chan;Lee, Jung-Sup
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.325-333
    • /
    • 2015
  • The ventilation systems composed three types of side vent (roll-up) 'SV', side vent+roof vent 'SV+RV', and side vent+roof fan 'SV+RF' with 7.5 m spacing, with specific set point temperatures for ventilation: SV ($35^{\circ}C$ open / $33^{\circ}C$ close), SV+RV or SV+RH ($35^{\circ}C$ open/$33^{\circ}C$ close for root ventilation and $37^{\circ}C$ open / $35^{\circ}C$ close for side vent). In the treatment of SV+RV, although the average daily maximum temperature inside the greenhouse temporarily increased by $38-40^{\circ}C$, thermal stress by high temperature did not occur and the disease incidence (%) of powdery mildew and downy mildew on the oriental melon were 25 - 75% lower than in the conventional SV treatment. In the SV treatment, the disease incidence (%) of powdery mildew and downy mildew were 1.4 - 7.7% and 4.2 - 15.9% for 'Deabakkul', and 20.3 - 22.8% and 2.8 - 11.3%, for 'Ildeungkkul'. The yield for one month was higher in the treatment of SV+RV than those in other treatments, with values of 2,105 kg/10a for 'Deabakkul' and 2,537 kg/10a for 'Ildeungkkul'. The simultaneous treatment with side vent and roof vent resulted in 16.2% higher yield (18.1% higher marketable yield) than that in the SV treatment for 'Deabakkul'.

Cultivation Characteristics of Wild Weedy Melons Collected in Korea (한국 야생잡초 참외의 재배적 특성)

  • Lee, Woo Sung;Suh, Dong Hwan;Lee, Ha Yoon;Noriyuki, Fujishita
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.467-472
    • /
    • 2013
  • Twenty and 16 accessions of the countrywide weedy melon (Cucumis melo var. agrestis) collections were evaluated in 1986 and 1990, respectively. There was a good variation in the plant height and their leaves were small in general. In sex expression, 30 of the accessions were andromonoecious, 4 were monoecious and 2 were hermaphrodite. Female flower set on main stems was extremely rare except for on hermaphrodite. On andromonoecious and monoecious plants, abundant female flowers set at the 1st and 2nd node of branch vines. Bitter taste was found in the young fruits of all the accessions tested. Mature fruits were dark yellow, yellow, light yellow or milky white in color, small in size, and very low in sweet taste. The number of seeds per fruit varied from 50.6 to 158.4 showing the characteristics of wild species for perpetuation in wild.

High Frequency Somatic Embryogenesis and Plant Regeneration in Seedling Explant Cultures of Melon (Cucumis melo L.) (멜론(Cucumis melo L.) 유묘 절편으로부터 고빈도의 체세포배발생과 식물체 재분화)

  • 최필선;소웅영;조덕이;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Cotyledonary and hypocotyl explants of melon seedlings were cultured on Murashige and Skoog's (MS) medium supplemented with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D) and benzyladenine (B.A).Up to 22% of cotyledonary explants and 7%, of hypocotyl explants, respectively: Produced somatic embryos through intervening two types of calli: bright yellow compact (BYC) callus and pale-yellow compact (PYC) callus. BYC callus was capable of producing somatic embryos at initial culture, but it became necrotic as subrulhues proceeded. In contrast UC callus was incapable of producing somatic embryos during initial culture (first 6 weeks), but it became bright-yellow friable (BYF) callus with forming a few globular embryos after 2 months of subculture, indicating that the callus turned embryogenic. The embryogenic capacity of BYF maintained for over one year when the callus was sucultured at 4-week interval. Upon transfer onto MS basal medium the callus gave rise to numerous somatic embryos and subsequently converted to plantlets. Plantlets were transplanted to potting soil and grown to maturity in the phyotron.

  • PDF

De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa

  • Kim, Hyun A;Shin, Ah-Young;Lee, Min-Seon;Lee, Hee-Jeong;Lee, Heung-Ryul;Ahn, Jongmoon;Nahm, Seokhyeon;Jo, Sung-Hwan;Park, Jeong Mee;Kwon, Suk-Yoon
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.

Anticancer Effects of the Extracts of Oriental Melon (Cucumis melo L. var makuwa Makino) Seeds (참외(Cucumis melo L. var makuwa Makino) 종자 추출물의 항암 활성)

  • Kim, Jung-Hyun;Suh, Jun-Kyu;Kang, Young-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.647-651
    • /
    • 2012
  • The objective of this study was to investigate the anticancer effects of the extracts of oriental melon seeds. Various solvent extracts of oriental melon seeds were prepared and their anticancer effects were examined using in vitro MTT and CV assays. The anticancer effects of various extracts of oriental melon seeds were also examined in five human cancer cell lines including A549, AGS, HT-29, MCF-7 and HepG2. The ethanol extract of heated oriental melon seeds showed the potent cytotoxic effects especially against mouse hepatoma cell line(Hepa1c1c7), human hepatoma cell line(HepG2) and human breast cancer cell line(MCF-7). These data suggest that oriental melon seeds can be a promising anticancer agent against human liver and breast cancer.

Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphidborne yellows virus Infecting Cucumis Species in Korea

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.