Browse > Article
http://dx.doi.org/10.14348/molcells.2016.2264

De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa  

Kim, Hyun A (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Shin, Ah-Young (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Min-Seon (Nongwoo Bio Co., Ltd.)
Lee, Hee-Jeong (Nongwoo Bio Co., Ltd.)
Lee, Heung-Ryul (Nongwoo Bio Co., Ltd.)
Ahn, Jongmoon (Nongwoo Bio Co., Ltd.)
Nahm, Seokhyeon (Nongwoo Bio Co., Ltd.)
Jo, Sung-Hwan (SEEDERS, Daeduk Industry Academic Cooperation Building)
Park, Jeong Mee (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kwon, Suk-Yoon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology)
Abstract
Oriental melon (Cucumis melo L. var. makuwa) is one of six subspecies of melon and is cultivated widely in East Asia, including China, Japan, and Korea. Although oriental melon is economically valuable in Asia and is genetically distinct from other subspecies, few reports of genome-scale research on oriental melon have been published. We generated 30.5 and 36.8 Gb of raw RNA sequence data from the female and male flowers, leaves, roots, and fruit of two oriental melon varieties, Korean landrace (KM) and Breeding line of NongWoo Bio Co. (NW), respectively. From the raw reads, 64,998 transcripts from KM and 100,234 transcripts from NW were de novo assembled. The assembled transcripts were used to identify molecular markers (e.g., single-nucleotide polymorphisms and simple sequence repeats), detect tissue-specific expressed genes, and construct a genetic linkage map. In total, 234 single-nucleotide polymorphisms and 25 simple sequence repeats were screened from 7,871 and 8,052 candidates, respectively, between the KM and NW varieties and used for construction of a genetic map with 94 F2 population specimens. The genetic linkage map consisted of 12 linkage groups, and 248 markers were assigned. These transcriptome and molecular marker data provide information useful for molecular breeding of oriental melon and further comparative studies of the Cucurbitaceae family.
Keywords
genetic linkage map; Korean melon; simple sequence repeat; single-nucleotide polymorphism; transcriptome analysis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V.M., Henaff, E., Camara, F., Cozzuto, L., Lowy, E., et al. (2012). The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109, 11872-11877.   DOI
2 Garg, R., Patel, R.K., Tyagi, A.K., and Jain, M. (2011). De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18, 53-63.   DOI
3 Hsieh, T.H., Lee, J.T., Charng, Y.Y., and Chan, M.T. (2002). Tomato plants ectopically expressing arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618-626.   DOI
4 Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1- 13.   DOI
5 Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.   DOI
6 Kosambi, D.D. (1943). The estimation of map distance from recombination values. Ann. Eugen. 12, 172-175.   DOI
7 Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291.   DOI
8 Kasuga, M., Miura, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and lowtemperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol. 45, 346-350.   DOI
9 Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403- 410.   DOI
10 Blanca, J.M., Canizares, J., Ziarsolo, P., Esteras, C., Mir, G., Nuez, F., Garcia-Mas, J., and Pico, M.B. (2011). Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species. Plant Genome 4, 118-131.   DOI
11 Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., and Newberg, L.A. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174-181.   DOI
12 Kim, J.E., Oh, S.K., Lee, J.H., Lee, B.M., and Jo, S.H. (2014). Genome- wide SNP calling using next generation sequencing data in tomato. Mol. Cells 37, 36-42.   DOI
13 Kong, Q., Xiang, C., Yu, Z., Zhang, C., Liu, F., Peng, C., and Peng, X. (2007). Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol. Ecol. Notes 7, 281-283.   DOI
14 Kong, Q., Xiang, C., Yang, J., and Yu, Z. (2011). Genetic variations of Chinese melon landraces investigated with EST-SSR markers. Hort. Environ. Biotechnol. 52, 163-169.   DOI
15 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/ map format and SAMtools. Bioinformatics 25, 2078-2079.   DOI
16 Liu, L., Kakihara, F., and Kato, M. (2004). Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 135, 305-313.   DOI
17 Mliki, A., Staub, J.E., Zhangyong, S., and Ghorbel, A. (2001). Genetic diversity in melon (Cucumis melo L.): an evaluation of African germplasm. Genet. Resour. Crop Evol. 48, 587-597.   DOI
18 Neff, M.M., Neff, J.D., Chory, J., and Pepper, A.E. (1998). dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387-392.   DOI
19 Brisson, N., Paszkowski, J., Penswick, J.R., Gronenborn, B., Potrykus, I., and Hohn, T. (1984). Expression of a bacterial gene in plants by using a viral vector. Nature 310, 511-514.   DOI
20 Blanca, J., Esteras, C., Ziarsolo, P., Perez, D., Ferna Ndez-Pedrosa, V., Collado, C., Rodra Guez de Pablos, R., Ballester, A., Roig, C., Canizares, J., et al. (2012). Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics 13, 280.   DOI
21 Cornejo, M.J., Luth, D., Blankenship, K.M., Anderson, O.D., and Blechl, A.E. (1993). Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 23, 567-581.   DOI
22 Cox, M.P., Peterson, D.A., and Biggs, P.J. (2010). SolexaQA: At-aglance quality assessment of Illumina second-generation sequencing data. BMC Bioinf. 11, 485.   DOI
23 Diaz, A., Fergany, M., Formisano, G., Ziarsolo, P., Blanca, J., Fei, Z., Staub, J.E., Zalapa, J.E., Cuevas, H.E., Dace, G., et al. (2011). A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 11, 111.   DOI
24 da Maia, L.C., Palmieri, D.A., de Souza, V.Q., Kopp, M.M., de Carvalho, F.I., and Costa de Oliveira, A. (2008). SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genomics 2008, 412696.
25 Gonzalez, V.M., Benjak, A., Henaff, E.M., Mir, G., Casacuberta, J.M., Garcia-Mas, J., and Puigdomenech, P. (2010). Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy. BMC Plant Biol. 10, 246.   DOI
26 Gonzalez-Ibeas, D., Blanca, J., Roig, C., Gonzalez-To, M., Pico, B., Truniger, V., Gomez, P., Deleu, W., Cano-Delgado, A., Arus, P., et al. (2007). MELOGEN: an EST database for melon functional genomics. BMC Genomics 8, 306.   DOI
27 Rodriguez-Moreno, L., Gonzalez, V.M., Benjak, A., Marti, M.C., Puigdomenech, P., Aranda, M.A., and Garcia-Mas, J. (2011). Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics 12, 424.   DOI
28 Oliver, M., Garcia-Mas, J., Cardus, M., Pueyo, N., Lopez-Sese, A.L., Arroyo, M., Gomez-Paniagua, H., Arus, P., and de Vicente, M.C. (2001). Construction of a reference linkage map for melon. Genome 44, 836-845.   DOI
29 Potenza, C., Aleman, L., and Sengupta-Gopalan, C. (2004). Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell. Dev. Biol. Plant 40, 1-22.
30 Portnoy, V., Diber, A., Pollock, S., Karchi, H., Lev, S., Tzuri, G., Harel-Beja, R., Forer, R., Portnoy, V.H., Lewinsohn, E., et al. (2011). Use of non-normalized, non-amplified cDNA for 454- Based RNA sequencing of fleshy melon fruit. Plant Genome 4, 36-46.   DOI
31 Rhee, S.Y., Wood, V., Dolinski, K., and Draghici, S. (2008). Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9, 509-515.   DOI
32 Schulz, M.H., Zerbino, D.R., Vingron, M., and Birney, E. (2012). Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28, 1086-1092.   DOI
33 Zerbino, D.R., and Birney, E. (2008). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821-829.   DOI