DOI QR코드

DOI QR Code

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shim, Chang-Ki (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Yong-Ki (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jee, Hyeong-Jin (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Sung-Jun (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Jong-Ho (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Min-Ho (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Eun-Jung (Organic Agriculture Division, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2012.09.23
  • Accepted : 2012.11.15
  • Published : 2012.12.31

Abstract

Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

Keywords

References

  1. Babadoost M., D. Tian, S. Z. Islam, and C. Pavon. 2008. Challenges and options in managing Phytophthora blight (Phytophthora capsici) of cucurbits. In: Pitrat, M. (ed) Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae, INRA, Avignon, France, pp. 399-406.
  2. Babadoost, M. 2000. Outbreak of Phytophthora foliar blight and fruit rot in processing pumpkin fields in Illinois. Plant Dis. 84 : 1345.
  3. Babadoost, M. 2004. Phytophthora blight: A serious threat to cucurbit industries (http://www.apsnet.org/publications/apsnet features/Pages/PhytophthoraBlight.aspx).
  4. Erwin, D. C. and O. K. Ribeiro. 1996. Phytophthora Disease Worldwide. APS Press. St. Paul, MN, pp. 562.
  5. Ficke, A., D. M. Gadoury, and R. C. Seem. 2002. Ontogenic resistance and plant disease management: A case study of grape powdery mildew. Phytophathology 92 : 671-675. https://doi.org/10.1094/PHYTO.2002.92.6.671
  6. Gadoury, D. M., R. C. Seem, A. Ficke, and W. F. Wilcox. 2003. Ontogenic resistance to powdery mildew in grape berries. Phytopathology 93 : 547-555. https://doi.org/10.1094/PHYTO.2003.93.5.547
  7. Gubler, W. D. and R. M. Davi. 1996. Phytophthora Root and Crown Rot. In : Compendium of Cucurbit Diseases, T. A. Zitter, D. L. Hopkins, and C. E. Thomas, (eds). APS Press, St. Paul, MN. pp. 19-20.
  8. Hassan, A. A., H. H. Al-Masri, U. A. Obaji, M. S. Wafi, N. E. Quronfilah, and M. A. Al-Rays. 1991. Screening of domestic and wild Cucumis melo germplasm for resistance to the Yellow-stunting disorder in the United Arab Emirates. Cucurbit Genetics Cooperative Report 14 : 56-58.
  9. Hausbeck, M. K. and K. H. Lamou. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88 : 1292-1303. https://doi.org/10.1094/PDIS.2004.88.12.1292
  10. Islam, S. Z. and M. Babadoos. 2004. Evaluation of selected fungicides for control of Phytophthora blight of processing pumpkin, 2004. Fung. & Nemat. Tests 59 : V129.
  11. Jang, S. W., H. D. Kim, E. S. Yi, and Y. T. Rho. 2008. Incidence of Phytophthora rot caused by Phytophthora capsici Leon. In Squash field and cultivar resistance. Kor. J. Hort. Sci. Technol. 26 : 484-489.
  12. Jee, H. J., S. B. Hong, and W. D. Cho. 2000b. Redescription of Phytophthora melonis and its distinct taxonomic features from P. drechsleri. Proceedings of the 1st Asian Conference on Plant Pathology. Beijing, China, pp. 77.
  13. Jee, H. J., W. D. Cho, and C. H. Kim. 2000a. Phytophthora diseases in Korea. Rural Development Administration, Suwon, Korea, pp. 226.
  14. Kennelly, M. M., D. M. Gadoury, W. F. Wilcox, P. A. Magarey, and R. C. Seem. 2005. Seasonal development of ontogenic resistance to downy mildew in grape, berries and rachises. Phytopathology 95 : 1445-1452. https://doi.org/10.1094/PHYTO-95-1445
  15. Kerje, T. and M. Grum. 2000. The origin of melon, Cucumis melo: A review of the literature. Acta Hort. 510 : 37-44.
  16. Kim, B. S. and E. Y. Shon. 1991. Fruit and stem rot of watermelon caused by Phytophthora drechsleri Tucker. Kor. J. Plant Pathol. 7 : 48-51.
  17. Kim, B. S. 1998. Phytophthora rot occurrence on Oriental melon (Cucumis melo) in Seongju. Res. Plant Di .4 : 15-16.
  18. Kim, C. H. and Y. K. Kim. 2002. Present status of soil-borne disease incidence and scheme for its integrated management in Korea. Res. Plant Dis. 8 : 146-161. https://doi.org/10.5423/RPD.2002.8.3.146
  19. KOSTAT (Statistics Korea). 2012. http://kostat.go.kr.
  20. Kousik, C. S., A. Lev, K. Ling, and W. P. Wechter. 2008. Potential sources of resistance to cucurbit powdery mildew (Podosphaera xanthii) in US Plant Introductions (PI) of Lagenaria siceraria (bottle gourd). HortScience. 43 : 1359-1364.
  21. Kuo, K. C. and H. C. Hoch. 1995. Visualization of the extracellular matrix surrounding pycnidiospores, germlings, and appresoria of Phyllosticta ampelicida. Mycologia 87 : 759-771. https://doi.org/10.2307/3760852
  22. Kwak, S. N. 1982. Studies on fruit characteristics and correlations between several characters in Oriental melon (Cucumis melo var. makuwa Makino.) MS Diss., Seoul National Univ., Seoul, Korea.
  23. Lee, J. M., G. W. Choi, and J. Janick. 2007. Horticulture in Korea. Kor. Soc. Hort. Sci. pp. 56-61.
  24. Lee, J. S., J. J. Choi, J. H. Choi, and Y. C. Huh. 2009. Control of soil-borne fungal diseases on muskmelon by soil disinfestations in consecutively cultivated fields. Res. Plant Dis. 15 : 30-35. https://doi.org/10.5423/RPD.2009.15.1.030
  25. Lee, S. W. and Z. H. Kim. 2003. Genetic relationship analysis of melons (Cucumis melo) germplasm by RAPD method. J. Kor. Hort. Sci. 44 : 307-313.
  26. Mo, S. Y., S. H. Im, G. D. Go, C. M. Ann, and D. H. Kim. 1998. RAPD analysis for genetic diversity of melon species. Kor. J. Hort. Sci. Technol. 16 : 21-24.
  27. Munger, H. M. and R. W. Robinson. 1991. Nomenclature of Cucumis melo L. Cucurbit Genetics Cooperative Report 14 : 43-44.
  28. Noh, J. J., K. K. Lee, G. C. Kim, W. Kim, B. R. Ko, J. S. Choi, and Y. G. Choi. 2004. Changes in density of Phytophthora capsici Leonian and incidence of Phytophthora root and fruit rot in field-grown watermelon on different repeated cropping years. Kor. J. Hort. Sci. Technol. 22 : 49.
  29. Norton, J. D., R. D. Cosper, D. A. Smith, and K. S. Rymal. 1986. 'AU-Jubilant' and 'AU-Producer' Watermelon. Hort Sci. 21 : 1460-1461.
  30. Padley L. D. Jr, E. A. Kabelka, and P. D. Roberts. 2009. Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita. HortScience 44 : 211-213.
  31. Padley L. D. Jr, E. A. Kabelka, P. D. Roberts, and R. French. 2008. Evaluation of Cucurbita pepo accessions for crown rot resistance to isolates of Phytophthora capsici. HortScience 43 : 1996-1999.
  32. Pavon, C. F., M. Babadoos, and K. N. Lambert. 2008. Quantification of Phytopththora capsici oospores in soil by sieving-centrifugation and real-time polymerase chain reaction. Plant Dis. 92 : 143-119. https://doi.org/10.1094/PDIS-92-1-0143
  33. Robinson, R. W. and D. S. Decker-Walters. 1997. Cucurbits. CAB Int. University Press, Oxon (GB) 226 pp.
  34. Song, V., G. Gusmini, and T. C. Wehner. 2004. Screening the watermelon germplasm collection for resistance to gummy stem blight. Acta Hort. 637 : 63-68.
  35. Ullah, Z. and R. Grumet. 2002. Localization of zucchini yellow mosaic virus to the veinal regions and role of viral coat protein in veinal chlorosis conditioned by the zym potyvirus resistance locus in cucumber. Physiol. Mol. Plant Pathol. 60 : 79-89. https://doi.org/10.1006/pmpp.2002.0379
  36. Wai, T. and R. Grumet. 1995. Inheritance of watermelon mosaic virus resistance in the cucumber line TMG-1: Tissue-specific expression and relationship to zucchini yellow mosaic virus resistance. Theor. Appl. Genet. 91 : 699-706.
  37. Yi, S. I., Y. S. Kwon, K. M. Bae, and I. H. Song. 2004. Recent progresses for the variety classification and denomination of Oriental melon and Melon (Cucumis melo L.). Kor. J. Hort. Sci. Technol. 22 : 515-522.
  38. Zhang, Z. G., Y. Q. Li, H. Fan, Y. C. Wang, and X. B. Zheng. 2006. Molecular detection of Phytophthora capsici in infected plant tissues, soil and water. Plant Pathol. J. 55 : 770-775. https://doi.org/10.1111/j.1365-3059.2006.01442.x

Cited by

  1. Characteristics of Resistance to Phytophthora Root and Crown Rot in Cucurbita pepo vol.101, pp.5, 2017, https://doi.org/10.1094/PDIS-06-16-0867-RE
  2. Transcriptome analysis clarified genes involved in resistance to Phytophthora capsici in melon vol.15, pp.2, 2012, https://doi.org/10.1371/journal.pone.0227284
  3. Genetic mapping and candidate gene analysis for melon resistance to Phytophthora capsici vol.10, pp.1, 2020, https://doi.org/10.1038/s41598-020-77600-2