• Title/Summary/Keyword: cubically hyponormal

Search Result 8, Processing Time 0.024 seconds

The Flatness Property of Local-cubically Hyponormal Weighted Shifts

  • Baek, Seunghwan;Do, Hyunjin;Lee, Mi Ryeong;Li, Chunji
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.315-324
    • /
    • 2019
  • In this note we introduce a local-cubically hyponormal weighted shift of order ${\theta}$ with $0{\leq}{\theta}{\leq}{\frac{\pi}{2}}$, which is a new notion between cubic hyponormality and quadratic hyponormality of operators. We discuss the property of flatness for local-cubically hyponormal weighted shifts.

WHICH WEIGHTED SHIFTS ARE FLAT ?

  • SHEN, HAILONG;LI, CHUNJI
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.579-590
    • /
    • 2020
  • The flatness property of a unilateral weighted shifts is important to study the gaps between subnormality and hyponormality. In this paper, we first summerize the results on the flatness for some special kinds of a weighted shifts. And then, we consider the flatness property for a local-cubically hyponormal weighted shifts, which was introduced in [2]. Let α : ${\sqrt{\frac{2}{3}}}$, ${\sqrt{\frac{2}{3}}}$, $\{{\sqrt{\frac{n+1}{n+2}}}\}^{\infty}_{n=2}$ and let Wα be the associated weighted shift. We prove that Wα is a local-cubically hyponormal weighted shift Wα of order ${\theta}={\frac{\pi}{4}}$ by numerical calculation.

On Semi-cubically Hyponormal Weighted Shifts with First Two Equal Weights

  • Baek, Seunghwan;Jung, Il Bong;Exner, George R.;Li, Chunji
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.899-910
    • /
    • 2016
  • It is known that a semi-cubically hyponormal weighted shift need not satisfy the flatness property, in which equality of two weights forces all or almost all weights to be equal. So it is a natural question to describe all semi-cubically hyponormal weighted shifts $W_{\alpha}$ with first two weights equal. Let ${\alpha}$ : 1, 1, ${\sqrt{x}}$(${\sqrt{u}}$, ${\sqrt{v}}$, ${\sqrt{w}}$)^ be a backward 3-step extension of a recursively generated weight sequence with 1 < x < u < v < w and let $W_{\alpha}$ be the associated weighted shift. In this paper we characterize completely the semi-cubical hyponormal $W_{\alpha}$ satisfying the additional assumption of the positive determinant coefficient property, which result is parallel to results for quadratic hyponormality.

On the Flatness of Semi-Cubically Hyponormal Weighted Shifts

  • Li, Chunji;Ahn, Ji-Hye
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.721-727
    • /
    • 2008
  • Let $W_{\alpha}$ be a weighted shift with positive weight sequence ${\alpha}=\{\alpha_i\}_{i=0}^{\infty}$. The semi-cubical hyponormality of $W_{\alpha}$ is introduced and some flatness properties of $W_{\alpha}$ are discussed in this note. In particular, it is proved that if ${\alpha}_n={\alpha}_{n+1}$ for some $n{\geq}1$, ${{\alpha}_{n+k}}={\alpha}_n$ for all $k{\geq}1$.

SEMI-CUBICALLY HYPONORMAL WEIGHTED SHIFTS WITH STAMPFLI'S SUBNORMAL COMPLETION

  • Baek, Seunghwan;Lee, Mi Ryeong
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.477-486
    • /
    • 2019
  • Let ${\alpha}:1,(1,{\sqrt{x}},{\sqrt{y}})^{\wedge}$ be a weight sequence with Stampfli's subnormal completion and let $W_{\alpha}$ be its associated weighted shift. In this paper we discuss some properties of the region ${\mathcal{U}}:=\{(x,y):W_{\alpha}$ is semi-cubically hyponormal} and describe the shape of the boundary of ${\mathcal{U}}$. In particular, we improve the results of [19, Theorem 4.2].

An Algorithm for Quartically Hyponormal Weighted Shifts

  • Baek, Seung-Hwan;Jung, Il-Bong;Moo, Gyung-Young
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • Examples of a quartically hyponormal weighted shift which is not 3-hyponormal are discussed in this note. In [7] Exner-Jung-Park proved that if ${\alpha}$(x) : $\sqrt{x},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},\sqrt{\frac{4}{5}},{\cdots}$ with 0 < x ${\leq}\;\frac{53252}{100000}$, then $W_{\alpha(x)}$ is quartically hyponormal but not 4-hyponormal. And, Curto-Lee([5]) improved their result such as that if ${\alpha}(x)$ : $\sqrt{x},\sqrt{\frac{2}{3}},\sqrt{\frac{3}{4}},\sqrt{\frac{4}{5}},{\cdots}$ with 0 < x ${\leq}\;\frac{667}{990}$, then $W_{\alpha(x)}$ is quartically hyponormal but not 3-hyponormal. In this note, we improve slightly Curto-Lee's extremal value by using an algorithm and computer software tool.