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THE PROPAGATION PHENOMENON OF
WEIGHTED SHIFTS

An-Hyun Kim and Eun-Young Kwon

Abstract. This paper concerns the propagation phenomenon of weight-
ed shifts. We here establish the existence of positive real numbers b and
c (1 < b < c) such that the recursive weighted shift W1,(1,

√
b,
√

c)∧ is

quadratically but not cubically hyponormal.

1. Introduction

Let H and K be infinite dimensional complex Hilbert spaces, let B(H,K) be
the set of bounded linear operators from H to K and write B(H) := B(H,H).
An operator T ∈ B(H) is said to be normal if T ∗T = TT ∗, hyponormal if
T ∗T ≥ TT ∗, and subnormal if T = N |H, where N is normal on some Hilbert
space K ⊇ H. Recall that given a bounded sequence of positive numbers
α : α0, α1, . . . (called weights), the (unilateral) weighted shift Wα associated
with α is the operator on `2(Z+) defined by Wαen := αnen+1 for all n ≥ 0,
where {en}∞n=0 is the canonical orthonormal basis for `2. It is straightforward
to check that Wα is hyponormal if and only if αn ≤ αn+1 for all n ≥ 0. The
Bram-Halmos criterion for subnormality states that an operator T is subnormal
if and only if (cf. [4, II.1.9])

(0.1)




I T ∗ . . . T ∗k

T T ∗T . . . T ∗kT
...

...
. . .

...
T k T ∗T k . . . T ∗kT k


 ≥ 0 (all k ≥ 1).

Let [A,B] := AB−BA denote the commutator of two operators A and B, and
define T to be k-hyponormal whenever the k × k operator matrix

(0.2) Mk(T ) := ([T ∗j , T i])k
i,j=1
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is positive. An application of the Choleski algorithm for operator matrices
shows that the positivity of (0.2) is equivalent to the positivity of the (k +
1) × (k + 1) operator matrix in (0.1); the Bram-Halmos criterion can be then
rephrased as saying that T is subnormal if and only if T is k-hyponormal for
every k ≥ 1 ([11]).

Recall ([1], [5], [11]) that T ∈ B(H) is said to be weakly k-hyponormal
if α1T + α2T

2 + · · · + αkT k is hyponormal for each (α1, . . . , αk) ∈ Ck, or
equivalently, Mk(T ) is weakly positive, i.e., ([11])

(0.3)

〈
Mk(T )




λ1x
...

λkx


 ,




λ1x
...

λkx




〉
≥ 0 for x ∈ H and λ1, . . . , λk ∈ C.

If k = 2, then T is said to be quadratically hyponormal, and if k = 3, then T is
said to be cubically hyponormal. Similarly, T ∈ B(H) is said to be polynomially
hyponormal if p(T ) is hyponormal for every polynomial p ∈ C[z]. It is known
that k-hyponormal ⇒ weakly k-hyponormal, but the converse is not true in
general.

In this paper we consider a propagation phenomenon of the cubic hyponor-
mality. Although examples abound of nontrivial quadratically hyponormal
recursive shifts with two equal weights (cf. [9]), we conjecture that the same is
not true for cubic hyponormality. To this end, we show in Theorem 3 the exis-
tence of positive numbers b and c such that the recursive shift W1,(1,

√
b,
√

c)∧ is
quadratically hyponormal but not cubically hyponormal. This gives an explicit
description of the gap between quadratic hyponormality and cubic hyponormal-
ity for recursive shifts.

2. The main result

J. Stampfli [15] showed that for subnormal weighted shifts Wα, a propaga-
tion phenomenon occurs which forces the flatness of Wα whenever two equal
weights are present. Later, A. Joshi proved in [13] that the shift with weights
α0 = α1 = a, α2 = α3 = · · · = b, 0 < a < b, is not quadratically hyponor-
mal, and P. Fan [12] established that for a = 1, b = 2, and 0 < s <

√
5/5,

Wα + sW 2
α is not hyponormal. On the other hand, it was shown in [6, The-

orem 2] that a hyponormal weighted shift with three equal weights cannot be
quadratically hyponormal without being flat: If Wα is quadratically hyponor-
mal and αn = αn+1 = αn+2 for some n ≥ 0, then α1 = α2 = α3 = · · · , i.e.,
Wα is subnormal. Furthermore, in [6, Proposition 11] it was shown that, in the
presence of quadratic hyponormality, two consecutive pairs of equal weights
again force flatness, thereby subnormality.

Theorem 1 (Propagation). Let Wα be a weighted shift with weight sequence
{αn}∞n=0.
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(i) ([15, Theorem 6]) Let Wα be subnormal. If αn = αn+1 for some n ≥ 0,
then α is flat, i.e., α1 = α2 = α3 = · · · .

(ii) ([6, Corollary 6]) Let Wα be 2-hyponormal. If αn = αn+1 for some
n ≥ 0, then α is flat.

(iii) ([2, Theorem 1]) Let Wα be quadratically hyponormal. If αn = αn+1

for some n ≥ 1, then α is flat.

Before we proceed, we consider the selfcommutator [(Wα + s W 2
α)∗,Wα +

sW 2
α]. Let Wα be a hyponormal weighted shift. For s ∈ C, we write

D(s) := [(Wα + sW 2
α)∗,Wα + sW 2

α]

and we let
(1.1)

Dn(s) := Pn[(Wα+sW 2
α)∗,Wα+sW 2

α]Pn =




q0 r̄0 0 . . . 0 0
r0 q1 r̄1 . . . 0 0
0 r1 q2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . qn−1 r̄n−1

0 0 0 . . . rn−1 qn




,

where Pn is the orthogonal projection onto the subspace generated by {e0, . . .,
en},

(1.2)





qn := un + |s|2vn

rn := s
√

wn

un := α2
n − α2

n−1

vn := α2
nα2

n+1 − α2
n−1α

2
n−2

wn := α2
n(α2

n+1 − α2
n−1)

2,

and, for notational convenience, α−2 = α−1 = 0. Clearly, Wα is quadratically
hyponormal if and only if Dn(s) ≥ 0 for all s ∈ C and all n ≥ 0. Let dn(·) :=
det (Dn(·)). Then dn satisfies the following 2–step recursive formula:

(1.3) d0 = q0, d1 = q0q1 − |r0|2, dn+2 = qn+2dn+1 − |rn+1|2dn.

If we let t := |s|2, we observe that dn is a polynomial in t of degree n + 1, and
if we write dn ≡ ∑n+1

i=0 c(n, i)ti, then the coefficients c(n, i) satisfy a double-
indexed recursive formula, namely
(1.4)
c(n + 2, i) = un+2 c(n + 1, i) + vn+2 c(n + 1, i− 1)− wn+1 c(n, i− 1),

c(n, 0) = u0 · · ·un, c(n, n + 1) = v0 · · · vn, c(1, 1) = u1v0 + v1u0 − w0

(n ≥ 0, i ≥ 1). We say that Wα is positively quadratically hyponormal if
c(n, i) ≥ 0 for every n ≥ 0, 0 ≤ i ≤ n + 1 (cf. [7]). Evidently, positively
quadratically hyponormal ⇒ quadratically hyponormal. The converse, how-
ever, is not true in general (cf. [3]).
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The idea of the proof of Theorem 1 (iii) is based on the following observation:
if Wα is quadratically hyponormal with α1 = α2 = 1, then a straightforward
calculation shows that

d4(t) = α2
0α

2
4(α

2
0 − 1)(α2

3 − 1)3t2 + c(4, 3)t3 + c(4, 4)t4 + c(4, 5)t5,

so

lim
t→0+

d4(t)
t2

= α2
0α

2
4(α

2
0 − 1)(α2

3 − 1)3 ≥ 0,

which forces α0 = 1 or α3 = 1, so that three equal weights are present and
hence by [6, Theorem 2], flatness occurs.

Note that in Theorem 1 (iii) the condition “n ≥ 1” cannot be relaxed to
“n ≥ 0”. For example, if (cf. [6, Proposition 7])

(1.5) α0 = α1 =

√
2
3
, αn =

√
n + 1
n + 2

(n ≥ 2),

then Wα is quadratically hyponormal but not cubically hyponormal (and hence
not subnormal); indeed if we let

C5(t) := det
(

P5

[
(Wα + tW 2

α + t2 W 3
α)∗, (Wα + tW 2

α + t2 W 3
α)

]
P5

)

then

lim
t→0+

C5(t)
t8

= − 1
2041200

< 0.

We briefly pause to recall that when α0 = α1 = 1, quadratic hyponormality
implies

(1.6) α2 <
√

2 and α3 ≥ (2− α2
2)
−2

(cf. [7, p. 78]).
At this point one might guess that every cubically hyponormal weighted shift

with two equal weights is subnormal. To affirm this, it would suffice to show,
in view of Theorem 1 (iii), that if Wα is cubically hyponormal and if α0 = α1,
then Wα is flat.

In the sequel, given α0 < α1 < α2 we denote by W(α0,α1,α2)∧ the recursive
weighted shift whose weights are calculated according to the recursive relation

(1.7) α2
n+1 = ϕ1 + ϕ0

1
α2

n

,

where

(1.8) ϕ0 = −α2
0α

2
1(α

2
2 − α2

1)
α2

1 − α2
0

and ϕ1 =
α2

1(α
2
2 − α2

0)
α2

1 − α2
0

.

It is well-known that W(α0,α1,α2)∧ is subnormal with 2–atomic Berger measure.
Let Wx (α0,α1,α2)∧ denote the weighted shift whose weight sequence consists of
the initial weight x followed by the weight sequence of W(α0,α1,α2)∧ . In [8], it
was shown that there exists 1 < b < c such that W1,(1,

√
b,
√

c)∧ is quadratically
hyponormal.
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In this stage we would pose:

Question 2. Does there exist 1 < b < c such that W1,(1,
√

b,
√

c)∧ is cubically
hyponormal ?

In [10, Example 3.1] it was shown that W√
x,(
√

a,
√

b,
√

c)∧ is 2-hyponormal if
and only if it is subnormal. Thus one might guess that W1,(1,

√
b,
√

c)∧ is quadrat-
ically hyponormal if and only if it is polynomially hyponormal. However, the
2-hyponormality of W√

x,(
√

a,
√

b,
√

c)∧ never admits a as a value for x. By con-
trast, quadratic hyponormality does admit the value a. Thus, the situation for
weak k-hyponormality becomes more delicate. In view of the preceding consid-
erations, we conjecture that the answer to Question 2 is negative; the following
theorem provides a strong evidence.

Theorem 3. There exists 1 < b < c such that W1,(1,
√

b,
√

c)∧ is quadratically
hyponormal but not cubically hyponormal.

Proof. Let Wα be a hyponormal weighted shift with weight sequence {αn}∞n=0.
For s, t ∈ C we let

Cn(s, t) := Pn

[
(Wα + sW 2

α + tW 3
α)∗, Wα + sW 2

α + tW 3
α

]
Pn;

Cn(s, t) is a pentadiagonal matrix:

(3.1) Cn(s, t) =




q0 r0 u0 0
r̄0 q1 r1 u1 0
ū0 r̄1 q2 r2 u2 0

0 ū1 r̄2 q3 r3 u3
. . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . un−2

. . . . . . . . . . . . rn−1

0 ūn−2 r̄n−1 qn




,

where
qn := (α2

n − α2
n−1) + (α2

nα2
n+1 − α2

n−2α
2
n−1) |s|2

+ (α2
nα2

n+1α
2
n+2 − α2

n−3α
2
n−2α

2
n−1) |t|2,

rn := αn (α2
n+1 − α2

n−1) s̄ + αn (α2
n+1α

2
n+2 − α2

n−1α
2
n−2) s t̄,

un := αnαn+1 (α2
n+2 − α2

n−1) t̄,

and, for notational convenience, α−3 = α−2 = α−1 = 0. Then Wα is cubically
hyponormal if and only if det Cn(s, t) ≥ 0 for every s, t ∈ C and every n ≥ 0.
Put α0 = α1 = 1. Then a straightforward calculation shows that

detC4(s, 0) = α2
2(α

2
2 − 1)(α2

4 − α2
3)

(
α2

3(2− α2
2)− 1

)
s4 (1 + p1(s))
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and

detC4(s, s2) = α2
2α

2
3(α

2
2 − 1)(α2

3 − α2
2)

(
α2

4(2− α2
3)− 1

)
s6 (1 + p2(s)),

where pi(s) is a polynomial in s with pi(0) = 0 for each i = 1, 2. Therefore, if
Wα is cubically hyponormal, then

α2
2(α

2
2 − 1)(α2

4 − α2
3)

(
α2

3(2− α2
2)− 1

)
≥ 0

and

α2
2α

2
3(α

2
2 − 1)(α2

3 − α2
2)

(
α2

4(2− α2
3)− 1

)
≥ 0.

Thus, if {αn}∞n=1 is strictly increasing, then

(3.2) α2
k+1 ≥

1
2− α2

k

and 1 < α2
k < 2 for k = 2, 3.

Write {αn}∞n=0 : 1, (1,
√

b,
√

c)∧ (1 < b < c). In view of Theorem 1 (iii),
{αn}∞n=1 is strictly increasing. Put

ϕ1 :=
b(c− 1)
b− 1

and ϕ0 := −b(c− b)
b− 1

.

Then α2
4 = ϕ1 + ϕ0

c = b(c2−2c+b)
c(b−1) . Thus by (3.2), we have that c ≥ 1

2−b and
α2

4 ≥ 1
2−c , i.e.,

b(c2 − 2c + b)
c(b− 1)

≥ 1
2− c

.

Therefore, if W1,(1,
√

b,
√

c)∧ is cubically hyponormal, then

(3.3) g(b, c) := c3 − 4c2 + (b + 5− 1
b
)c− 2b ≤ 0.

It is known ([8, Proposition 4.6]) that if b = 11
10 , then there exists a value of

c between 1142
1000 and 1143

1000 for which W1,(1,
√

b,
√

c)∧ is quadratically hyponormal.
But a direct calculation shows that g( 11

10 , c) > 0 for 1142
1000 < c < 1143

1000 , so that
the corresponding shift is not cubically hyponormal. ¤

As a strategy to answer Question 2, recall an argument in [8, Theorem 4.3].
Let 0 < a < b < c, let α :

√
x, (

√
a,
√

b,
√

c)∧ and let

h+
2 :=

(
sup

{
x : Wα is positively quadratically hyponormal

}) 1
2

.

As before, write ϕ1 := b(c−a)
b−a and ϕ0 := −ab(c−b)

b−a . Put

(3.4) L2 :=
ϕ1 +

√
ϕ2

1 + 4ϕ0

2
and K := −ϕ2

1L
2

ϕ0
.
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In [8], it was shown that

(3.5) h+
2 = min

{√
a , f(a, b, c)

}
,

where

f(a, b, c) :=
(

a2b2c + ab2(c− a)K + ab(c− b)K2

a3b + ab(c− a)K + (a2 + bc− 2ab)K2

) 1
2

.

Note that the second term under min in (3.5) may be greater than the first:
for example if a = 17

5 , b = 58
17 and c = 99

29 , then

f(a, b, c) ≈
√

3.4218 >

√
17
5

=
√

a.

Thus, in this case, α :
√

17
5 , (

√
17
5 ,

√
58
17 ,

√
99
29 )∧ induces a positively quadrati-

cally hyponormal shift. For α :
√

x, (
√

a,
√

b,
√

c)∧ write

h2 :=
(

sup
{
x : Wα is quadratically hyponormal

}) 1
2

.

Clearly, h+
2 ≤ h2. In [14, Theorem 4.6], it was shown that h2 ≤ f(a, b, c);

consequently, we have

(3.6) h2 = min
{√

a , f(a, b, c)
}

.

If 1 < b < c write
H2 :=

{
(b, c) : W1,(1,

√
b,
√

c)∧ is quadratically hyponormal
}
;

H3 :=
{
(b, c) : W1,(1,

√
b,
√

c)∧ is cubically hyponormal
}
.

Corollary 4. If 1 < b < c we let

f(b, c) := b(bc− 1) + b(b− 1)(c− 1)K − (b− 1)2K2;(4.1)

g(b, c) := c3 − 4c2 + (b + 5− 1
b
)c− 2b,(4.2)

where K is given by (3.4) with a = 1. Then we have:
(i) H2 = {(b, c) : f(b, c) ≥ 0};
(ii) H3 ⊆ {(b, c) : f(b, c) ≥ 0 and g(b, c) ≤ 0}.

Proof. By (3.6), W1,(1,
√

b,
√

c)∧ is quadratically hyponormal if and only if 1 ≤
f(a, b, c), or equivalently,

b(bc− 1) + b(b− 1)(c− 1)K − (b− 1)2K2 ≥ 0,

where

K =
b(c− 1)2

(
b(c− 1) +

√
b2(c− 1)2 − 4b(b− 1)(c− b)

)

2(b− 1)2(c− b)
.

This proves assertion (i). Assertion (ii) follows from assertion (i) and (3.3). ¤
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