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THE PROPAGATION PHENOMENON OF
WEIGHTED SHIFTS

AN-HyuN KiM AND EUN-YOUNG KWON

ABSTRACT. This paper concerns the propagation phenomenon of weight-
ed shifts. We here establish the existence of positive real numbers b and
¢ (1 < b < ¢) such that the recursive weighted shift Wi a,ve,yen 18
quadratically but not cubically hyponormal.

1. Introduction

Let H and K be infinite dimensional complex Hilbert spaces, let B(H, K) be
the set of bounded linear operators from H to K and write B(H) := B(H, H).
An operator T € B(H) is said to be normal if T*T = TT*, hyponormal if
T*T > TT*, and subnormal if T'= N|3, where N is normal on some Hilbert
space L 2 H. Recall that given a bounded sequence of positive numbers
a : ap,ai,... (called weights), the (unilateral) weighted shift W, associated
with « is the operator on ¢?(Z,) defined by Wye, = aneny1 for all n > 0,
where {e,}° is the canonical orthonormal basis for £2. It is straightforward
to check that W, is hyponormal if and only if o, < a,41 for all n > 0. The
Bram-Halmos criterion for subnormality states that an operator T is subnormal
if and only if (cf. [4, II.1.9])

I T ... T
T T*T ... T*T

(0.1) . . . >0 (all k>1).
T+ T*Tk ... TRTE

Let [A, B] :== AB — BA denote the commutator of two operators A and B, and
define T to be k-hyponormal whenever the k x k operator matrix

(0.2) My (T) = ([T, T"))¢

1,j=1
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is positive. An application of the Choleski algorithm for operator matrices
shows that the positivity of (0.2) is equivalent to the positivity of the (k +
1) x (k + 1) operator matrix in (0.1); the Bram-Halmos criterion can be then
rephrased as saying that T is subnormal if and only if 7" is k-hyponormal for
every k > 1 ([11]).

Recall ([1], [5], [11]) that T" € B(H) is said to be weakly k-hyponormal
if a1T + aoT? + --- + o3, T* is hyponormal for each (ai,...,a;) € C*, or
equivalently, My (T') is weakly positive, i.e., ([11])

Al.’t )\125
(0.3) <Mk(T) S : > >0 for x € H and Aq,...,A; € C.
/\kiU )\kl‘

If £k =2, then T is said to be quadratically hyponormal, and if k = 3, then T is
said to be cubically hyponormal. Similarly, T € B(H) is said to be polynomially
hyponormal if p(T) is hyponormal for every polynomial p € C[z]. It is known
that k-hyponormal = weakly k-hyponormal, but the converse is not true in
general.

In this paper we consider a propagation phenomenon of the cubic hyponor-
mality. Although examples abound of nontrivial quadratically hyponormal
recursive shifts with two equal weights (cf. [9]), we conjecture that the same is
not true for cubic hyponormality. To this end, we show in Theorem 3 the exis-
tence of positive numbers b and ¢ such that the recursive shift Wl,(l, WLl is
quadratically hyponormal but not cubically hyponormal. This gives an explicit
description of the gap between quadratic hyponormality and cubic hyponormal-
ity for recursive shifts.

2. The main result

J. Stampfli [15] showed that for subnormal weighted shifts W, a propaga-
tion phenomenon occurs which forces the flatness of W, whenever two equal
weights are present. Later, A. Joshi proved in [13] that the shift with weights
ap =1 =a, ap =a3 =--- =0, 0 < a < b, is not quadratically hyponor-
mal, and P. Fan [12] established that for a = 1, b = 2, and 0 < s < v/5/5,
W, + s W2 is not hyponormal. On the other hand, it was shown in [6, The-
orem 2| that a hyponormal weighted shift with three equal weights cannot be
quadratically hyponormal without being flat: If W, is quadratically hyponor-
mal and oy, = apt41 = apqo for somen >0, then o = ag = ag = -+, i.e.,
W, is subnormal. Furthermore, in [6, Proposition 11] it was shown that, in the
presence of quadratic hyponormality, two consecutive pairs of equal weights
again force flatness, thereby subnormality.

Theorem 1 (Propagation). Let W, be a weighted shift with weight sequence
{an oo
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(i) ([15, Theorem 6]) Let W, be subnormal. If a, = aupy1 for somen >0,
then « is flat, i.e., ¢ = g =z =---.
(ii) ([6, Corollary 6]) Let W, be 2-hyponormal. If ay, = oy for some
n >0, then « is flat.
(iii) ([2, Theorem 1]) Let Wy, be quadratically hyponormal. If o, = cupiq
for some n > 1, then « is flat.

Before we proceed, we consider the selfcommutator [(W, + s W2)*, W, +
sW2]. Let W, be a hyponormal weighted shift. For s € C, we write

D(s) := [(Wy + s WH* W, + s W2

and we let
(1.1)
qo F() 0 0 0
o @1 T1 ... 0 0
0 71 q2 0 0
Dy (8) := Pp[(Wats WA WotsW2P, = | . . = | , o,
0 0 0 oo Qn—1 Trn—1
0O 0 0 ... 71 qn

where P, is the orthogonal projection onto the subspace generated by {eg, ...,
en}a

Gn = U + |5]*vy

Tn = Sy/Wp
(1.2) Up = a2 — a2,

Un = a%a%-&-l —an 105

wy = ap (g —an )%
and, for notational convenience, a_o = a—; = 0. Clearly, W,, is quadratically
hyponormal if and only if D, (s) > 0 for all s € C and all n > 0. Let d,(-) :=

det (D, (+)). Then d,, satisfies the following 2-step recursive formula:
(1.3) do=qo, di=qoq1 — |rol®, dnsa = gni2dnir — [Fni1|dn.

If we let t := |s|?, we observe that d,, is a polynomial in ¢ of degree n + 1, and
if we write d,, = Z?:OI c(n,i)t’, then the coefficients c(n,i) satisfy a double-
indexed recursive formula, namely
(1.4)
cn+2,i) =uptocn+1,70) + vppocn+ 1,4 — 1) — wpq1 c(n,i — 1),
c(n,0) =ug--tup, c(n,n+1)=vg- vy, ¢(1,1)=1wuvg+v1up— Wo

(n > 0,7 >1). We say that W, is positively quadratically hyponormal if
¢(n,i) > 0 for every n > 0, 0 < ¢ < n+1 (cf. [7]). Evidently, positively
quadratically hyponormal =- quadratically hyponormal. The converse, how-
ever, is not true in general (cf. [3]).
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The idea of the proof of Theorem 1 (iii) is based on the following observation:
if W, is quadratically hyponormal with a; = @y = 1, then a straightforward
calculation shows that

dy(t) = adai(ad — 1)(a2 — 1%t + (4, 3)t® + c(4, 4)t* + c(4,5)t°
s0

. (t) 2 2/ 2 2 3
tg%:_ 2 = agaj(ag —1)(az —1)° >0,
which forces ap = 1 or a3 = 1, so that three equal weights are present and
hence by [6, Theorem 2], flatness occurs.

Note that in Theorem 1 (iii) the condition “n > 1” cannot be relaxed to
“n > 0”. For example, if (cf. [6, Proposition 7])

(1.5) ap=ay = \/> \/@

then W, is quadratically hyponormal but not cubically hyponormal (and hence
not subnormal); indeed if we let

C5(t) := det <P5 [(Wo +t WS+ W2, (Wo +t W2 + 2 W3] P5>

then

Cs(t) 1
t—0+ 8 2041200

We briefly pause to recall that when oy = a7 = 1, quadratic hyponormality

implies

(1.6) as < V2 and as> (2—a2)?

(cf. [7, p. 78]).

At this point one might guess that every cubically hyponormal weighted shift
with two equal weights is subnormal. To affirm this, it would suffice to show,
in view of Theorem 1 (iii), that if W,, is cubically hyponormal and if ap = a1,
then W, is flat.

In the sequel, given ag < a1 < az we denote by Wy, a;,a,)r the recursive
weighted shift whose weights are calculated according to the recursive relation

< 0.

1
(1.7) a31+1 =1+ Po—,
an
where
a2a?(ad — a?) a2(ad — a?)
1.8 _ %01\ 1 d _ 1lqg 0
49 L R R

It is well-known that W4, o, a,)~ 18 subnormal with 2—atomic Berger measure.
Let Wy (ag,a1,a0)~ denote the weighted shift whose weight sequence consists of
the initial weight 2 followed by the weight sequence of Wi a,,a.)2- In [8], it
was shown that there exists 1 < b < ¢ such that Wl,(L Vb 18 quadratically
hyponormal.



THE PROPAGATION PHENOMENON OF WEIGHTED SHIFTS 183

In this stage we would pose:

Question 2. Does there exist 1 < b < ¢ such that Wl,(l,\/g,\/E)A is cubically
hyponormal ?

In [10, Example 3.1] it was shown that Wz (Van/.yen 18 2-hyponormal if
and only if it is subnormal. Thus one might guess that Wy (1B, 1/E)A is quadrat-
ically hyponormal if and only if it is polynomially hyponormal. However, the
2-hyponormality of W V7 (Va,v/b,ye)s hever admits a as a value for z. By con-
trast, quadratic hyponormality does admit the value a. Thus, the situation for
weak k-hyponormality becomes more delicate. In view of the preceding consid-
erations, we conjecture that the answer to Question 2 is negative; the following
theorem provides a strong evidence.

Theorem 3. There exists 1 < b < ¢ such that VVL(1 NN is quadratically
hyponormal but not cubically hyponormal.

Proof. Let W, be a hyponormal weighted shift with weight sequence {a, }52 .
For s,t € C we let

Cr(s,t) 1= Py [(Wo + sW2+tW2)*, Wy + s W2 +tW?2] Py;
Cr(s,t) is a pentadiagonal matrix:

g ro up O
o qgq rmm u 0
g T1 g2 12 uz O

0 u 72 g3 r3 u3

(3.1) Cp(s,t) = |

0 an72 an 1 dn

where

Gn = (0p —ap 1) + (ahai,, —ap_sap )]s

2 2 2 2 2 2 2
+ (anan+1an+2 - an—San,—Qan—l) |t‘ )
- 2 2 = 2 2 2 2 7
Tn 1= Qp (anJrl anfl) s + Qp (an+1an+2 anflanf2) St,
Up 2= OnQnil (O‘i+2 —ap_ 1)t
and, for notational convenience, «_3 = a_o = a_1 = 0. Then W, is cubically
hyponormal if and only if det C,(s,t) > 0 for every s,t € C and every n > 0.
Put ap = a3 = 1. Then a straightforward calculation shows that

det Cy(s,0) = ag(ag — 1)(0[?L — ag) <a§(2 — ag) — 1) st (1+p1(9))
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and
det Ci (s, 5%) = aZad(03 — 1)(ad — a%)(ai(z — ) - 1) (14 pa(s)),

where p;(s) is a polynomial in s with p;(0) = 0 for each i = 1,2. Therefore, if
W, is cubically hyponormal, then

ad(ad - (ot - ) (32— ) ~1) 20
and
dod(od - (e} - o) (32— ad) - 1) 2 0.

Thus, if {a,}52 is strictly increasing, then

1
(3.2) ap1 > —— and 1<aj <2 fork=23.

2—ay

Write {a,}5%, : 1,(1,vb,/€) (1 < b < ¢). In view of Theorem 1 (iii),
{@, }22, is strictly increasing. Put

b(c—1)

1= b1 and ¢ = —

b(c—10)
b—1 "

Then af = @1 + £ = b(cj(;ifcl;rb). Thus by (3.2), we have that ¢ > 51 and

2 1
ay > 5, Le,

b(c* —2c+b) 1
cb—1) —2-¢
Therefore, if Wl,(L NN is cubically hyponormal, then

1
(3.3) g(b,c):=c* -4+ (b+5— E)C —2b<0.

It is known ([8, Proposition 4.6]) that if b = 11 then there exists a value of

10°
¢ between % and % for which W, (1,V/5,/6)~ is quadratically hyponormal.

But a direct calculation shows that g(%,c) > 0 for 42 « ¢ < 13 "gh that

' e ¢ 1000 1000°
the corresponding shift is not cubically hyponormal. (I

As a strategy to answer Question 2, recall an argument in [8, Theorem 4.3].
Let 0 <a<b<c let a:/x (va,vb,/c)" and let

2

h2+ = (sup{x : W, is positively quadratically hyponormal}>

As before, write 7 := b(bc__j) and g 1= —%. Put

2o tVeitAee o el
: 5 o

(3.4)
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In [8], it was shown that

(3.5) hi = min {\/ZL, f(a,b, c)} ,
where
Flarb,c) = ( a?b?c + ab*(c — a)K + ab(c — b)K? );
T a3b + ab(c — a)K + (a? + bc — 2ab) K2
Note that the second term under min in (3.5) may be greater than the first:
for example if a = %, b= ‘;’—? and ¢ = g—g, then

fla,b,c) ~ V3.4218 > \/? =a.

Thus, in this case, a : ./1—57, (4/ g, ,/%, \/%)A induces a positively quadrati-

cally hyponormal shift. For « : \/z, (v/a, Vb, /c)" write

1
2

ho := (sup{x : W, is quadratically hyponormal}) .

Clearly, hy < hy. In [14, Theorem 4.6], it was shown that hy < f(a,b,c);
consequently, we have

(3.6) hy =min{va, f(a,b,c)}.
If 1 <b < cwrite
o = {(b7 c): Wi e ven 18 quadratically hyponormal};
3 1= {(b7 c): Wl,(L\/E,\/E)A is cubically hyponormal}.
Corollary 4. If1 < b < ¢ we let
(4.1) f(b,c) :=bbec —1)+bb—1)(c— 1)K — (b—1)°K?

1
(4.2) g(b,c) :=c* -4 + (b+5 — 5)c — 2b,

where K is given by (3.4) with a = 1. Then we have:

(i) 2 = {(b, c): f(be) > O}?
(i) 52 C {(bre): Flbre) >0 and glb.c) <0},

Proof. By (3.6), Wl,(l,\/E,\/E)A is quadratically hyponormal if and only if 1 <
f(a,b,c), or equivalently,

bbc — 1) +b(b—1)(c — 1)K — (b—1)?K? >0,

where

b(c —1)2 (b(c — 1)+ /B2~ 12— 4b(b— 1)(c — b))
2(b — 1)%(c — b) '

This proves assertion (i). Assertion (ii) follows from assertion (i) and (3.3). O

K =
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