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A NOTE ON CUBICALLY HYPONORMAL
WEIGHTED SHIFTS

Cuunugt L1, MuNEO CHO, AND M1 RYEONG LEE

ABSTRACT. In this paper, we show that any cubically hyponormal weight-
ed shift with first two equal weights is flat. And we give an example of
a weighted shift which is not cubically hyponormal but almost-cubically
hyponormal.

1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. An operator T
is polynomially hyponormal if p(T') is hyponormal for all (complex) polynomi-
als p (cf. [6]). And an operator T in L£(H) is weakly n-hyponormal if p(T) is
hyponormal for any polynomial p with degree n or less (cf. [8]). In particular,
the weak 2-hyponormality (or weak 3-hyponormality) referred to as quadratic
hyponormality (or cubic hyponormality, resp.) has been considered in detail
in [4], [5] and [8]. It is well known that “subnormal = polynomially hyponor-
mal = --- = weakly 3-hyponormal = weakly 2-hyponormal = hyponormal”.
However, one does not know about converse implications for n > 3 yet; see [2],
[5], [8] for weak 2- and weak 3-hyponormalities.

A unilateral weighted shift is often used to study the bridges between sub-
normality and hyponormality. In [9] Stampfli proved that every subnormal
weighted shift W, with any two equal weights has flatness, i.e., if ap = a4
for some k € Ny = NU{0}, then oy = ap = ---. In [2], R. Curto proved that the
2-hyponormal weighted shift W, with any two equal weights has flatness. Also
he obtained a weighted shift W, with first two equal weights without being flat.
Moreover, he raised a question: describe all quadratically hyponormal weighted
shifts with first two equal weights, which was studied as several kinds of de-
tections. In [1], Y. Choi proved that every polynomially hyponormal weighted
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shift W, with any two equal weights has flatness. In particular, he showed
that if W, is a weighted shift with first two equal weights and W, + sW[
is hyponormal for all s € C and all n € N, then W, is flat. In this paper,
we show that any cubically hyponormal weighted shift W, with first two equal
weights is flat (see Theorem 3.3 below). Also, we give an example of a weighted
shift which is not cubically hyponormal but almost-cubically hyponormal (see
Definition 2.1 below).

Some of the calculations in Section 3 were obtained through computer ex-
periments using the software tool Mathematica [10].

2. Constructions of formulas

For A, B € L(H), we write [4, B] :== AB—BA. Let o := {;}$2, be a weight
sequence in the positive real number set Ry. The weighted shift W, acting
on ¢? (Np), with an orthonormal basis {e;}°,, is defined by Wye; = aseit1
for all i € Np. Recall that a weighted shift W, is cubically hyponormal if
We + aW?2 + bW2 is hyponormal for any a,b € C ([8]), i.e.,

D(a,b) == [(Wa +aW? +bW2)*, Wy +aW?2 +bW3Z] >0 for any a,b € C.

Let P, be the orthogonal projection onto the subspace VI_{e;}. For a,b € C,
we let

Dy(a,b) = Py [(Wy 4+ aW?2 +0W3)* W, 4+ aW?2 + W2 P,

(g 7m0 20 O i
o @ 1tz 0
Zo Tt g T2 22 0

0 z1 ™ ¢ 713 =23

Zn—2

Tn—1

where
2
Gn = (0f — o 1)+ (ahoi  —on oo ) |al
2
+ (0pal 100, —ap_gai_yai ) [b]7,

2\ 2 2 2 2

+1Aian—lyl+ian(an+lan+2Afan—lan—ﬂ)ah
— 2 2 7
Zn = g1 (g o — ay_1)b.

Then it is obvious that W, is cubically hyponormal if and only if the pentadi-
agonal matrix D, (a,b) > 0 for any a,b € C and any n € N.
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Definition 2.1. (i) A weighted shift W, is semi-cubically hyponormal with
type I if W, + sW2 is hyponormal for any s € C.

(ii) A weighted shift W, is semi-cubically hyponormal with type II if W2 +
sW2 is hyponormal for any s € C.

(iii) A weighted shift W, is almost-cubically hyponormal if it is semi-cubically
hyponormal with types I and II.

We first construct formulas on type I (see [7]). Let n be a fixed positive
integer. For s € C, we let

DI(s) = P [(Wa + sW2)™, We + sW2] Py

i 4dn,0 0 L 0 Zn,0 0
0 qn,1 . . 0 Zn,1
0
_ 0 Qn,n—2 0 Zn,m—n+1
)
Zn,0 0 0 Qn,n—1 0 0
0 Zna 0 ' ' :
0 L grmn 0
L 0 Zn,m—n+1 0 ce 0 n.m |
where
Gk = Ungs + Vo |87
Znk = /Wn, kS,
Up | = ai - aifl,
Un,k = aiozi_,_l e 'ai-i-n—l - ai_nai_2 T O‘i—lv
Wn,k = aiaiﬂ e 'ai+n72(ai+nfl - aifl)Q
witha_1 = a_g =-+- = a_,, = 0 (for our convenience). Then it is obvious that

W, is semi-weakly n-hyponormal if and only if pl! (s) >0foralls € C,m € N.
To detect Dm(s) > 0 for all s € C, we usually use the Nested Determinant
Test ([3]). Now we consider dg"] = dg"](s) = det Dg"](s) for 1 <j<m.

By changing the standard basis of C"*!, we have the following lemma.

Lemma 2.2 ([7, Lemma 2.1]). Let n > 2 be a fized positive integer. For
m € N, if two non-negative integers k and j satisfy m = (n— 1)k + j, i.e.,
m = j (mod n — 1), then D,[ﬁ](s) is unitarily equivalent to [@gZODLn]l (1,7)] @
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[EB"_JQ_HD,[?]Q( 7)), where
2.1)
Gn,j—i Zn,j—i 0
. Zn,j—i Qn,(n—1)+j—i
Dk,l(i’j) = 0

Zn(n-1)tj—i - 0

(zn,(k—l)(n—l)+]’—i Zn,(k—1)(n—1)4j—i
0 Zn(k—D)(n—D)4j—i  dnk(n—1)+j—i

for0<i<j, and

(2.2)
An,(n—1)+j—i  An,(n—1)4j—i 0
. Zn,(n—1)+j—i Gn,2(n—1)+j—i
n] . .
Dk,Q(Zvj) = 0 Zno(n-1)4j—i 0

?n,(lc—l)(nfl)Jrjfi Zn,(k—1)(n—1)+j—i
0 Zn(k—1)(n-D4j—i  Ink(n—1)+j—i

for 7+1<i<n—2. Therefore, we have that

(2.3) det DI HdetDH (i, ) H det D} (i, 7).
=0 i=j+1

Moreover, a weighted shift W, 1is semi-weakly n-hyponormal if and only if
Dy(i,§) >0 (0 <i <j) and D'Y(i,j) >0 (j+1<i<n—2).

As a special example of Lemma 2.2, we consider here the case of n = 3.

This case is j = 0 or 1 obviously. Lemma 2.2 implies that the matrix D,[i](s)
induces the following two cases:

det DI¥l(s) = {

Since

det D))(s) = det D}'"}(0,0) - det D}"}(1,0) i j =0,
det DS/ (s) = det D} (0,1) - det D"} (1,1) if j = 1.

g0 230 0
23,0 3,2 23,2

D}(0,0) = D} (1,1) =

0 Z3,2
q3,2k

and D,[:}Q(l, 0) is a submatrix of D,[c"]1 (0, 1), if the following two matrices

30 230 O 0

q 31 23,1

23,0 {32 232 Z31 Q33 233
D (0,0) = T plon=| " 77
k,l( y ) 0 Z3.2 .. .. ) k,l( ) ) 0 23’3

q3.2k q3,2k+1

are all positive, then W, is semi-cubically hyponormal with type I.
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We construct formulas on type II. For s € C, we have
Ma(s) = P [(W2 + W)™, (W2 4 sW2) | P
[wo ¢o O 1
¢o w1 ¢ 0
0 ¢1 w2 ¢2 0

— 0 ¢2 w3

L 0 ¢n-1  wn
where
wi =&+ s e, bk = 5V0k, & =o0fai, —af yai
Nk = aiai+1ai+27ai73ai72ai71, O = ai(ai+1ai+27ai72ai71)2 (k>0)
and a_1 = a_g = a_3 :=0. Put 0, := 0y, (-) = det (M,, (-)). Then

0o = Wo, 01 = Wow1 — |¢0|2a On+2 = Wn+20n+1 — |¢5n+1|2 on (n=0)

and o, is actually a polynomial in ¢ := |s|2 of degree n + 1, with Maclaurin’s
expansion o, (t) := Z?:Jrol c(n,i)tt. Tt follows from the similar method in [2]
that

(i) ¢(0,0) =&, ¢(0,1) = no;

(i) ¢(1,0) = &&o, c(1,1) = &mo + &om, ¢ (1,2) = mno;

(i) e(n+2,i) = &n2c(n+1,4) + Npyoc(n+1,i — 1) — dpp1c(n,i — 1)

(n>0, 0<i<n+3);
(iv)e(n,n+1)=non1 - nn > 0and ¢ (n,0) = &y -+ &, > 0 for all n € Ny.

3. Main results

It is well known that if a weighted shift W, is quadratically hyponormal
with first two equal weights, it is not necessarily flat ([2]). For example,

if o : \/g, \/g, \/g, \/%, \/%, ..., then the associated weighted shift W, is

quadratically hyponormal. And the author in [1] showed the following;:

Proposition 3.1 ([1, Theorem 1]). Let W, be a quadratically hyponormal
weighted shift with o = {an}52o. If an = apt1 for some n > 1, then Wy, is
flat, i.e., o =g =---.

First, we give the following lemma.

Lemma 3.2. Let f(x) = apz® + a12? + asx + a3 be any cubic real polynomial.
Then f(x) > 0 for all x > 0 if and only if it holds one of the following cases:
(1) ag >0, ap >0, az >0, a3 > 0;
(2) ap >0, az >0 and a? — 3agaz < 0;
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(3) ap >0, az >0, as <0, 27akas + 2a3 — 9aparaz > 0 and

4agal + 4adas + 27aga§ — a?a3 — 18apajazaz > 0;

(4) ap >0, a3 >0, a1 <0, az > 0, a?—3apaz > 0, 27a3az+2a3 —9aparas >

0 and
dapay + 4adaz + 27a2a3 — aial — 18aparazaz > 0.

Proof. It is easy to see that one of the necessary conditions is ag > 0, az > 0.
From a calculation, we have f’(z) = 3apz? + 2a12 + as. If a? — 3agaz < 0,
using ag > 0, then f/(z) > 0 for all > 0, which implies that f(z) > 0 for all
a > 0. This is the case of (2).

If ap > 0,a3 > 0 and a1 > 0,a2 > 0, then it is the case of (1).

Now we suppose that a? — 3apaz > 0, ag > 0 and a3 > 0. Denote zo :=

—uityaiziaods W be the largest root of the equation f’(x) = 0. We consider two
cases of 5 < 0 and xo > 0. For the case of x5 < 0, it follows from ag > 0 that
f'(z) > 0 for all z > 0. Using the condition a3z > 0, we have f(z) >0 (z > 0).
If 9 >0, ie., a2 < 0 or a1 < 0,a2 > 0, which is the case (3) or (4) resp., then
from Fermat’s theorem, f(z2) is the local minimum of f(x) for x > 0. From
simple computation, we have

1 27a(2)a3 + Qai’ — 9apaias — 2 (a% — 3a0a2)3/2
f (‘TQ) = E ag
Hence f (z2) > 0 is equivalent to 27aZasz + 2a3 — 9apaiaz > 0, and
2 (a% — 3a0a2)3/2 < 27a3a3 + Qa? — 9aga;asg,
that is,
4apay + 4adas + 27a2a3 — aial — 18apaiazaz > 0.
Thus we have the lemma. O

The following result shows that the cubically hyponormal weighted shift with
first two equal weights has flatness. Hence, the nonsubnormal but cubically
hyponormal weighted shift operator should have strictly increasing weights.

Theorem 3.3. If a weighted shift W, is cubically hyponormal with g = aq,
then W, is flat.

Proof. Assume that {an}zozo is nondecreasing, and without loss of generality,
let ag = a1 = 1. We claim that as = 1.
Suppose that as > 1. Since W, is cubically hyponormal, we must have

f(a,b) :=det Dy (a,b)

1+ a? + a3b? a+ aab a3b
= a+ aZab ada? + ada3b? a (oz% — 1) + aba3a3
a3b a(ad — 1) +aba3a? a3 —1+a?*(dda3 — 1) + b*ada3a?

= apa® + arja’ + aza® 4+ a3 > 0,
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for any a,b € R, where
ap = a3 (afa3 — 1),

a1 = a3aj (a%a4 — 1) b2 — 203 ( a? +2a3a3 — 1) b+ adad ( — 1)
as = aja; (a3a4 —1)b* - 2a2a3 (a4 — 1) b3
+ a3 (—2a3 + 3a2a3 —aa? +a3a3a] — 1) b — 2030 (« ( — 1) b,

az = (a2a3a4) b5 + ada3 (a3a4 - 1) bt +a3a3 (a2 — 1) b2
Since ag > 0, az > 0, by Lemma 3.2, if f (a,b) = aga® + aja* + a2a® + az > 0,
for any a,b € R, then either one of the followings holds:
(i) ag > 0. But ag < 0, if b is positive infinitesimal, so it is a contradiction.
(ii) Since
Ay = a3 —3agaz = () b* + ()03 + ()b + () b+ asas ( - 1)

thus A; < 0 implies that a%a% (a% — 1)2 < 0 by taking b = 0, which induces a
contradiction.
(iii) Since
Ay = dagai + daas + 27a3a3 — aia3 — 18agpaiazaz
= ()b + ()b + ()0 + -+ ()b +daFafa] (an — 1) (a2 + 1)1V,

if b is negative infinitesimal, then Ay < 0. It is also a contradiction. Hence we
must have a; = 1. Since cubic hyponormality implies quadratic hyponormality,
by Proposition 3.1, we know that W, is flat. (]

By Proposition 3.1 and Theorem 3.3, we have the following results.

Corollary 3.4. Let W, be a cubically hyponormal weighted shift with o =
{an}2y. If an = any1 for some n >0, then Wy, is flat.

Corollary 3.5. Let W, be a weighted shift with a weight sequence o, where

2 k+1
Nl : = =4/ = =4 — =2
(3.1) ooy = o \/;, and oy “k+2’ k ,3,

Then Wy, s not cubically hyponormal.
Proposition 3.6. Let W, ,) be a weighted shift with o (x,x), where

k+1
3.2 g =) = d =3/—, k=2,3,....
( ) 04(1',1') 7)) aq \/57 ana ok k/’+2, P
If 1—19 (14 — \/6) <z <+5-— %, then Wo(z,z) 15 semi-cubically hyponormal with
type 1. In particular, Wa(g 2) 18 semi-cubically hyponormal with type I.
373

Proof. See [7, Corollary 3.7]. O
Proposition 3.7. Let W, () be a weighted shift with a(z), where

[k+1
(3.3) a(x):ag =z and oy, = o k=1,2,....

Ifo<z< then Wy 2y is semi-cubically hyponormal with type II.

10’
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Proposition 3.7 can be proved by some computations as following steps.
Lemma 3.8. &,11m, =, forn > 4.

Proof. From simple computations, we can have

4
—a2a?,; —a? 2 _ >3
6 anan-‘rl CY’n—QOén—l (TL+1) (TL+3) (TL_ )
9
= a2a? 2 2 2 2 _ >4
n CYnanJrloénJr2 CY'r173a'r172047zfl (TL+ 1) (7’L+4) (n - )
36

Op=0a? (a?. 02, —a?_,a?_ ’ = n>3

n(n—i—l n+2 n2n1) (n+1)(n+2)(n+4)2 ( - )

which induces this lemma. [l

Lemma 3.9. Forn >5 and i > 1, we have

c(n,i)=nncn—1,i—1)+ (&, - -+ - - &5) hy with h; = &4c(3,1) — d3¢(2,7 — 1).
Proof. Using Lemma 3.8, we have the result by similar to the proof of the claim
in [2, page 64]. O

Now we consider the sequence « () as in (3.3), we can obtain
-t
~ 15
1
oa(t) = T (9t + (12 — 122) t* + (15 — 162) t + (18 — 20z))

oo(t) = % (Bt+4), o1t (4t + 3% + 5)

o3(t) = f% [(189z — 216)t4 + (362 — 99)3 + (111z — 108)¢2
+ (130x — 117)t + 140z — 126,
ou(t) = — 151$200 [(17013@ — 1944) t° + (1188x — 1323) t* + (423 — 684)
+ (690 — 621) > + (6202 — 558) t + 640z — 576] ,
os(t) = — 9079”200 {(1701.% —1944) 15 + (11882 — 1323) t° + (8552 — 900)t*
+ (402 — ATT)E + (3802 — 342)t% + (3202 — 288)t + 320z — 288] ,
and
hy *%(10z— ) h2:31—z50(10z79), hgz%(l’c—l),

hy=——— 2z —1), h; =0 for all i > 5.
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Proof of Proposition 3.7. For 0 < = < 19—0, it is easy to see that each of the

coefficients of o;(t) (i =0,1,2,3,4,5) is positive, furthermore we have
17

6,2) = ————2 (102 -9 0
¢(6.:2)= ~gg5z500" (107 =9 > 0.
=———1z(1 — 121
¢ (6,3) 3175200090( 070x 9) >0,
4) = ——— 2 (1846x — 1751
c(6,4) 2116800036(8696 751) > 0,
1
— (3342 — 371
c(7,3) 17463600096(33 x —371) > 0,
4) = ———— x (4618z — 4361
c(7,4) 931390 OOOSC( 618z — 4361) > 0,
1
4) = ———————x(lbdx — 14 .
¢(®4) = ~Gogsazony” 1947~ 145)> 0
Let
2 x (5n +11)
P T 5+ ) (n+3) (n+4)
2 z (11n + 2)
P T+ ) (n+2)(n+3) (n+4)
B 71 x (266n — 526)
P T -t 1) (n+2)(nt3) (nt4)
2 2 (9261 — 1864)

T I D+ 1)2(n—-2)(n+2) (n+3) (n+4)’
wecanseethatpi<O(i:1,2,3,4)forn23.SinceO<:E<f—o,%>%
and % > 19—0, using Lemma 3.9, we have

c¢(n,1)=p1 (102 —9) (&1 -+~ &) >0 forn >6,

c(n,2) = p2 (102 —9) ({2 -~ &) >0 forn>7,

265n — 371
_ _ e for n >
c(1,3) = (5= Zor 2L ) (€rma e 6) >0 Tor 8
899n — 1652
4) = _ g e f >0,

c(n,4) = py (Jc 926n1864) (&n—a &) >0 forn>9

This concludes the proof. (I

Finally, by Corollary 3.5, Proposition 3.6 and Proposition 3.7, we obtain:
Theorem 3.10. Let W, be a weighted shift with a sequence « as in (3.1).
Then Wy, is almost-cubically hyponormal but not cubically hyponormal.
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