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A NOTE ON CUBICALLY HYPONORMAL

WEIGHTED SHIFTS

Chunji Li, Muneo Chō, and Mi Ryeong Lee

Abstract. In this paper, we show that any cubically hyponormal weight-
ed shift with first two equal weights is flat. And we give an example of
a weighted shift which is not cubically hyponormal but almost-cubically
hyponormal.

1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. An operator T
is polynomially hyponormal if p(T ) is hyponormal for all (complex) polynomi-
als p (cf. [6]). And an operator T in L(H) is weakly n-hyponormal if p(T ) is
hyponormal for any polynomial p with degree n or less (cf. [8]). In particular,
the weak 2-hyponormality (or weak 3-hyponormality) referred to as quadratic
hyponormality (or cubic hyponormality, resp.) has been considered in detail
in [4], [5] and [8]. It is well known that “subnormal ⇒ polynomially hyponor-
mal ⇒ · · · ⇒ weakly 3-hyponormal ⇒ weakly 2-hyponormal ⇒ hyponormal”.
However, one does not know about converse implications for n ≥ 3 yet; see [2],
[5], [8] for weak 2- and weak 3-hyponormalities.

A unilateral weighted shift is often used to study the bridges between sub-
normality and hyponormality. In [9] Stampfli proved that every subnormal
weighted shift Wα with any two equal weights has flatness, i.e., if αk = αk+1

for some k ∈ N0 = N∪{0}, then α1 = α2 = · · · . In [2], R. Curto proved that the
2-hyponormal weighted shift Wα with any two equal weights has flatness. Also
he obtained a weighted shift Wα with first two equal weights without being flat.
Moreover, he raised a question: describe all quadratically hyponormal weighted
shifts with first two equal weights, which was studied as several kinds of de-
tections. In [1], Y. Choi proved that every polynomially hyponormal weighted
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shift Wα with any two equal weights has flatness. In particular, he showed
that if Wα is a weighted shift with first two equal weights and Wα + sWn

α

is hyponormal for all s ∈ C and all n ∈ N, then Wα is flat. In this paper,
we show that any cubically hyponormal weighted shift Wα with first two equal
weights is flat (see Theorem 3.3 below). Also, we give an example of a weighted
shift which is not cubically hyponormal but almost-cubically hyponormal (see
Definition 2.1 below).

Some of the calculations in Section 3 were obtained through computer ex-
periments using the software tool Mathematica [10].

2. Constructions of formulas

For A,B ∈ L(H), we write [A,B] := AB−BA. Let α := {αi}∞i=0 be a weight
sequence in the positive real number set R+. The weighted shift Wα acting
on ℓ2 (N0), with an orthonormal basis {ei}∞i=0, is defined by Wαei = αiei+1

for all i ∈ N0. Recall that a weighted shift Wα is cubically hyponormal if
Wα + aW 2

α + bW 3
α is hyponormal for any a, b ∈ C ([8]), i.e.,

D(a, b) := [(Wα + aW 2
α + bW 3

α)
∗,Wα + aW 2

α + bW 3
α] ≥ 0 for any a, b ∈ C.

Let Pn be the orthogonal projection onto the subspace ∨n
i=0{ei}. For a, b ∈ C,

we let

Dn(a, b) = Pn[(Wα + aW 2
α + bW 3

α)
∗,Wα + aW 2

α + bW 3
α]Pn

=







































q0 r0 z0 0
r0 q1 r1 z1 0
z0 r1 q2 r2 z2 0

0 z1 r2 q3 r3 z3
. . .
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. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

. . .
. . .

. . .
. . .

. . . zn−2

. . .
. . .

. . .
. . . rn−1

0 zn−2 rn−1 qn







































,

where

qn := (α2
n − α2

n−1) + (α2
nα

2
n+1 − α2

n−2α
2
n−1) |a|2

+ (α2
nα

2
n+1α

2
n+2 − α2

n−3α
2
n−2α

2
n−1) |b|

2
,

rn := αn(α
2
n+1 − α2

n−1)ā+ αn(α
2
n+1α

2
n+2 − α2

n−1α
2
n−2)ab̄,

zn := αnαn+1(α
2
n+2 − α2

n−1)b̄.

Then it is obvious that Wα is cubically hyponormal if and only if the pentadi-
agonal matrix Dn(a, b) ≥ 0 for any a, b ∈ C and any n ∈ N.
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Definition 2.1. (i) A weighted shift Wα is semi-cubically hyponormal with

type I if Wα + sW 3
α is hyponormal for any s ∈ C.

(ii) A weighted shift Wα is semi-cubically hyponormal with type II if W 2
α +

sW 3
α is hyponormal for any s ∈ C.
(iii) A weighted shiftWα is almost-cubically hyponormal if it is semi-cubically

hyponormal with types I and II.

We first construct formulas on type I (see [7]). Let n be a fixed positive
integer. For s ∈ C, we let

D[n]
m (s) = Pm

[

(Wα + sWn
α )

∗

,Wα + sWn
α

]

Pm

=





































qn,0 0 · · · 0 zn,0 0

0 qn,1
. . .

. . . 0 zn,1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . . 0

0
. . .

. . . qn,n−2 0
. . .

. . . zn,m−n+1

z̄n,0 0
. . . 0 qn,n−1 0

. . . 0

0 z̄n,1
. . .

. . . 0
. . .

. . .
...

. . .
. . . 0

. . .
. . . qn,m−1 0

0 z̄n,m−n+1 0 · · · 0 qn,m





































,

where

qn,k = un,k + vn,k |s|2 ,
zn,k =

√
wn,ks̄,

un,k = α2
k − α2

k−1,

vn,k = α2
kα

2
k+1 · · ·α2

k+n−1 − α2
k−nα

2
k−2 · · ·α2

k−1,

wn,k = α2
kα

2
k+1 · · ·α2

k+n−2(α
2
k+n−1 − α2

k−1)
2

with α−1 = α−2 = · · · = α−n = 0 (for our convenience). Then it is obvious that

Wα is semi-weakly n-hyponormal if and only ifD
[n]
m (s) ≥ 0 for all s ∈ C, m ∈ N.

To detect D
[n]
m (s) ≥ 0 for all s ∈ C, we usually use the Nested Determinant

Test ([3]). Now we consider d
[n]
j := d

[n]
j (s) = detD

[n]
j (s) for 1 ≤ j ≤ m.

By changing the standard basis of Cn+1, we have the following lemma.

Lemma 2.2 ([7, Lemma 2.1]). Let n ≥ 2 be a fixed positive integer. For

m ∈ N, if two non-negative integers k and j satisfy m = (n− 1) k + j, i.e.,

m ≡ j (mod n − 1), then D
[n]
m (s) is unitarily equivalent to [⊕j

i=0D
[n]
k,1(i, j)] ⊕
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[⊕n−2
i=j+1D

[n]
k,2(i, j)], where

(2.1)

D
[n]
k,1(i, j) =



















qn,j−i zn,j−i 0

z̄n,j−i qn,(n−1)+j−i

. . .
. . .

0 z̄n,(n−1)+j−i

. . .
. . . 0

. . .
. . . qn,(k−1)(n−1)+j−i zn,(k−1)(n−1)+j−i

0 z̄n,(k−1)(n−1)+j−i qn,k(n−1)+j−i



















for 0 ≤ i ≤ j, and

(2.2)

D
[n]
k,2(i, j) =



















qn,(n−1)+j−i zn,(n−1)+j−i 0

z̄n,(n−1)+j−i qn,2(n−1)+j−i

. . .

0 z̄n,2(n−1)+j−i

. . .
. . . 0

. . .
. . . qn,(k−1)(n−1)+j−i zn,(k−1)(n−1)+j−i

0 z̄n,(k−1)(n−1)+j−i qn,k(n−1)+j−i



















for j + 1 ≤ i ≤ n− 2. Therefore, we have that

(2.3) detD[n]
m (s) =

j
∏

i=0

detD
[n]
k,1(i, j) ·

n−2
∏

i=j+1

detD
[n]
k,2(i, j).

Moreover, a weighted shift Wα is semi-weakly n-hyponormal if and only if

D
[n]
k,1(i, j) ≥ 0 (0 ≤ i ≤ j) and D

[n]
k,2(i, j) ≥ 0 (j + 1 ≤ i ≤ n− 2).

As a special example of Lemma 2.2, we consider here the case of n = 3.

This case is j = 0 or 1 obviously. Lemma 2.2 implies that the matrix D
[3]
m (s)

induces the following two cases:

detD[3]
m (s) =

{

detD
[3]
2k(s) = detD

[n]
k,1(0, 0) · detD

[n]
k,2(1, 0) if j = 0,

detD
[3]
2k+1(s) = detD

[n]
k,1(0, 1) · detD

[n]
k,1(1, 1) if j = 1.

Since

D
[n]
k,1(0, 0) = D

[n]
k,1(1, 1) =













q3,0 z3,0 0
z̄3,0 q3,2 z3,2

0 z̄3,2
. . .

. . .

. . . q3,2k













and D
[n]
k,2(1, 0) is a submatrix of D

[n]
k,1(0, 1), if the following two matrices

D
[3]
k,1(0, 0) =













q3,0 z3,0 0
z̄3,0 q3,2 z3,2

0 z̄3,2
. . .

. . .

. . . q3,2k













, D
[3]
k,1(0, 1) =











q3,1 z3,1 0
z̄3,1 q3,3 z3,3

0 z̄3,3
. . .

q3,2k+1











are all positive, then Wα is semi-cubically hyponormal with type I.
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We construct formulas on type II. For s ∈ C, we have

Mn(s) := Pn

[

(

W 2
α + sW 3

α

)∗

,
(

W 2
α + sW 3

α

)

]

Pn

=



























ω0 φ̄0 0
φ0 ω1 φ̄1 0
0 φ1 ω2 φ̄2 0

0 φ2 ω3
. . .

. . .

. . .
. . .

. . .
. . . 0

. . .
. . .

. . . φ̄n−1

0 φn−1 ωn



























,

where

ωk := ξk + |s|2 ηk, φk := s
√

δk, ξk := α2
kα

2
k+1 − α2

k−2α
2
k−1,

ηk := α2
kα

2
k+1α

2
k+2−α2

k−3α
2
k−2α

2
k−1, δk := α2

k(α
2
k+1α

2
k+2−α2

k−2α
2
k−1)

2 (k ≥ 0)

and α−1 = α−2 = α−3 := 0. Put σn := σn (·) = det (Mn (·)). Then
σ0 = ω0, σ1 = ω0ω1 − |φ0|2 , σn+2 = ωn+2σn+1 − |φn+1|2 σn (n ≥ 0)

and σn is actually a polynomial in t := |s|2 of degree n + 1, with Maclaurin’s

expansion σn (t) :=
∑n+1

i=0 c (n, i) ti. It follows from the similar method in [2]
that

(i) c (0, 0) = ξ0, c (0, 1) = η0;
(ii) c (1, 0) = ξ1ξ0, c (1, 1) = ξ1η0 + ξ0η1, c (1, 2) = η1η0;
(iii) c (n+ 2, i) = ξn+2c (n+ 1, i) + ηn+2c (n+ 1, i− 1)− δn+1c (n, i− 1)

(n ≥ 0, 0 ≤ i ≤ n+ 3);
(iv) c (n, n+ 1) = η0η1 · · · ηn > 0 and c (n, 0) = ξ0ξ1 · · · ξn > 0 for all n ∈ N0.

3. Main results

It is well known that if a weighted shift Wα is quadratically hyponormal
with first two equal weights, it is not necessarily flat ([2]). For example,

if α :
√

2
3 ,
√

2
3 ,
√

3
4 ,

√

4
5 ,

√

5
6 , . . . , then the associated weighted shift Wα is

quadratically hyponormal. And the author in [1] showed the following:

Proposition 3.1 ([1, Theorem 1]). Let Wα be a quadratically hyponormal

weighted shift with α = {αn}∞n=0. If αn = αn+1 for some n ≥ 1, then Wα is

flat, i.e., α1 = α2 = · · · .
First, we give the following lemma.

Lemma 3.2. Let f(x) = a0x
3 + a1x

2 + a2x+ a3 be any cubic real polynomial.

Then f(x) ≥ 0 for all x ≥ 0 if and only if it holds one of the following cases:
(1) a0 > 0, a1 > 0, a2 ≥ 0, a3 ≥ 0;
(2) a0 > 0, a3 ≥ 0 and a21 − 3a0a2 ≤ 0;
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(3) a0 > 0, a3 ≥ 0, a2 < 0, 27a20a3 + 2a31 − 9a0a1a2 ≥ 0 and

4a0a
3
2 + 4a31a3 + 27a20a

2
3 − a21a

2
2 − 18a0a1a2a3 ≥ 0;

(4) a0 > 0, a3 ≥ 0, a1 ≤ 0, a2 ≥ 0, a21−3a0a2 > 0, 27a20a3+2a31−9a0a1a2 ≥
0 and

4a0a
3
2 + 4a31a3 + 27a20a

2
3 − a21a

2
2 − 18a0a1a2a3 ≥ 0.

Proof. It is easy to see that one of the necessary conditions is a0 > 0, a3 ≥ 0.
From a calculation, we have f ′(x) = 3a0x

2 + 2a1x + a2. If a21 − 3a0a2 ≤ 0,
using a0 > 0, then f ′(x) ≥ 0 for all x ≥ 0, which implies that f(x) ≥ 0 for all
x ≥ 0. This is the case of (2).

If a0 > 0, a3 ≥ 0 and a1 > 0, a2 ≥ 0, then it is the case of (1).
Now we suppose that a21 − 3a0a2 > 0, a0 > 0 and a3 ≥ 0. Denote x2 :=

−a1+
√

a2

1
−3a0a2

3a0

be the largest root of the equation f ′(x) = 0. We consider two
cases of x2 < 0 and x2 ≥ 0. For the case of x2 < 0, it follows from a0 > 0 that
f ′(x) ≥ 0 for all x ≥ 0. Using the condition a3 ≥ 0, we have f(x) ≥ 0 (x ≥ 0).
If x2 ≥ 0, i.e., a2 < 0 or a1 ≤ 0, a2 ≥ 0, which is the case (3) or (4) resp., then
from Fermat’s theorem, f(x2) is the local minimum of f(x) for x ≥ 0. From
simple computation, we have

f (x2) =
1

27

27a20a3 + 2a31 − 9a0a1a2 − 2
(

a21 − 3a0a2
)3/2

a20
.

Hence f (x2) ≥ 0 is equivalent to 27a20a3 + 2a31 − 9a0a1a2 ≥ 0, and

2
(

a21 − 3a0a2
)3/2 ≤ 27a20a3 + 2a31 − 9a0a1a2,

that is,
4a0a

3
2 + 4a31a3 + 27a20a

2
3 − a21a

2
2 − 18a0a1a2a3 ≥ 0.

Thus we have the lemma. �

The following result shows that the cubically hyponormal weighted shift with
first two equal weights has flatness. Hence, the nonsubnormal but cubically
hyponormal weighted shift operator should have strictly increasing weights.

Theorem 3.3. If a weighted shift Wα is cubically hyponormal with α0 = α1,

then Wα is flat.

Proof. Assume that {αn}∞n=0 is nondecreasing, and without loss of generality,
let α0 = α1 = 1. We claim that α2 = 1.

Suppose that α2 > 1. Since Wα is cubically hyponormal, we must have

f(a, b) := detD2 (a, b)

=

∣

∣

∣

∣

∣

∣

1 + a2 + α2
2b

2 a+ α2
2ab α2

2b

a+ α2
2ab α2

2a
2 + α2

2α
2
3b

2 a
(

α2
2 − 1

)

+ abα2
2α

2
3

α2
2b a(α2

2 − 1) + abα2
2α

2
3 α2

2 − 1 + a2(α2
2α

2
3 − 1) + b2α2

2α
2
3α

2
4

∣

∣

∣

∣

∣

∣

= a0a
6 + a1a

4 + a2a
2 + a3 ≥ 0,
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for any a, b ∈ R, where
a0 = α2

2

(

α2
2α

2
3 − 1

)

,

a1 = α2
2α

2
3

(

α2
2α

2
4 − 1

)

b2 − 2α2
2

(

−α2
3 + 2α2

2α
2
3 − 1

)

b+ α2
2α

2
3

(

α2
2 − 1

)

,

a2 = α4
2α

2
3

(

α2
3α

2
4 − 1

)

b4 − 2α4
2α

2
3

(

α2
4 − 1

)

b3

+ α2
2

(

−2α2
3 + 3α2

2α
2
3 − α2

3α
2
4 + α2

2α
2
3α

2
4 − 1

)

b2 − 2α2
2α

2
3

(

α2
2 − 1

)

b,

a3 =
(

α6
2α

4
3α

2
4

)

b6 + α4
2α

2
3

(

α2
3α

2
4 − 1

)

b4 + α2
2α

2
3

(

α2
2 − 1

)

b2.

Since a0 > 0, a3 ≥ 0, by Lemma 3.2, if f (a, b) = a0a
6 + a1a

4 + a2a
2 + a3 ≥ 0,

for any a, b ∈ R, then either one of the followings holds:
(i) a2 ≥ 0. But a2 < 0, if b is positive infinitesimal, so it is a contradiction.
(ii) Since

∆1 := a21 − 3a0a2 = (·) b4 + (·) b3 + (·) b2 + (·) b+ α4
2α

4
3

(

α2
2 − 1

)2
,

thus ∆1 ≤ 0 implies that α4
2α

4
3

(

α2
2 − 1

)2 ≤ 0 by taking b = 0, which induces a
contradiction.

(iii) Since

∆2 := 4a0a
3
2 + 4a31a3 + 27a20a

2
3 − a21a

2
2 − 18a0a1a2a3

= (·) b12 + (·) b11 + (·) b10 + · · ·+ (·) b4 + 4α8
2α

8
3α

2
4 (α2 − 1)

4
(α2 + 1)

4
b3,

if b is negative infinitesimal, then ∆2 < 0. It is also a contradiction. Hence we
must have α2 = 1. Since cubic hyponormality implies quadratic hyponormality,
by Proposition 3.1, we know that Wα is flat. �

By Proposition 3.1 and Theorem 3.3, we have the following results.

Corollary 3.4. Let Wα be a cubically hyponormal weighted shift with α =
{αn}∞n=0. If αn = αn+1 for some n ≥ 0, then Wα is flat.

Corollary 3.5. Let Wα be a weighted shift with a weight sequence α, where

(3.1) α : α0 = α1 =

√

2

3
, and αk =

√

k + 1

k + 2
, k = 2, 3, . . . .

Then Wα is not cubically hyponormal.

Proposition 3.6. Let Wα(x,x) be a weighted shift with α (x, x), where

(3.2) α (x, x) : α0 = α1 =
√
x, and αk =

√

k + 1

k + 2
, k = 2, 3, . . . .

If 1
19

(

14−
√
6
)

≤ x ≤
√
5− 3

2 , then Wα(x,x) is semi-cubically hyponormal with

type I. In particular, Wα( 2

3
, 2
3 )

is semi-cubically hyponormal with type I.

Proof. See [7, Corollary 3.7]. �

Proposition 3.7. Let Wα(x) be a weighted shift with α(x), where

(3.3) α (x) : α0 =
√
x and αk =

√

k + 1

k + 2
, k = 1, 2, . . . .

If 0 < x < 9
10 , then Wα(x) is semi-cubically hyponormal with type II.
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Proposition 3.7 can be proved by some computations as following steps.

Lemma 3.8. ξn+1ηn = δn for n ≥ 4.

Proof. From simple computations, we can have

ξn = α2
nα

2
n+1 − α2

n−2α
2
n−1 =

4

(n+ 1) (n+ 3)
(n ≥ 3)

ηn = α2
nα

2
n+1α

2
n+2 − α2

n−3α
2
n−2α

2
n−1 =

9

(n+ 1) (n+ 4)
(n ≥ 4)

δn = α2
n

(

α2
n+1α

2
n+2 − α2

n−2α
2
n−1

)2
=

36

(n+ 1) (n+ 2) (n+ 4)
2 (n ≥ 3)

which induces this lemma. �

Lemma 3.9. For n ≥ 5 and i ≥ 1, we have

c (n, i) = ηnc (n− 1, i− 1) + (ξn · · · · · ξ5)hi with hi := ξ4c (3, i)− δ3c(2, i− 1).

Proof. Using Lemma 3.8, we have the result by similar to the proof of the claim
in [2, page 64]. �

Now we consider the sequence α (x) as in (3.3), we can obtain

σ0(t) =
x

6
(3t+ 4) , σ1(t) =

x

15

(

4t+ 3t2 + 5
)

,

σ2(t) =
1

90
x
(

9t3 + (12− 12x) t2 + (15− 16x) t+ (18− 20x)
)

,

σ3(t) = − x

3780

[

(189x− 216)t4 + (36x− 99)t3 + (111x− 108)t2

+ (130x− 117)t+ 140x− 126

]

,

σ4(t) = − x

151 200

[

(1701x− 1944) t5 + (1188x− 1323) t4 + (423x− 684) t3

+ (690x− 621) t2 + (620x− 558) t+ 640x− 576

]

,

σ5(t) = − x

907 200

[

(1701x− 1944) t6 + (1188x− 1323) t5 + (855x− 900)t4

+ (402x− 477)t3 + (380x− 342)t2 + (320x− 288)t+ 320x− 288

]

,

and

h1 =
2x

4725
(10x− 9) , h2 =

x

3150
(10x− 9) , h3 =

x

525
(2x− 1) ,

h4 = − x

350
(2x− 1) , hi = 0 for all i ≥ 5.
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Proof of Proposition 3.7. For 0 < x < 9
10 , it is easy to see that each of the

coefficients of σi(t) (i = 0, 1, 2, 3, 4, 5) is positive, furthermore we have

c (6, 2) = − 17

5953 500
x (10x− 9) > 0,

c (6, 3) = − 1

31 752 000
x (1070x− 1219) > 0,

c (6, 4) = − 1

21 168 000
x (1846x− 1751) > 0,

c (7, 3) = − 1

174 636 000
x (334x− 371) > 0,

c (7, 4) = − 1

931 392 000
x (4618x− 4361) > 0,

c (8, 4) = − 1

698 544 000
x (154x− 145) > 0.

Let

ρ1 = − 2

4725

x (5n+ 11)

(n+ 1) (n+ 3) (n+ 4)
,

ρ2 = − 2

1575

x (11n+ 2)

n (n+ 1) (n+ 2) (n+ 3) (n+ 4)
,

ρ3 = − 2

525

x (266n− 526)

n (n− 1) (n+ 1)
2
(n+ 2) (n+ 3) (n+ 4)

,

ρ4 = − 2

175

x (926n− 1864)

n2 (n− 1) (n+ 1)
2
(n− 2) (n+ 2) (n+ 3) (n+ 4)

,

we can see that ρi < 0 (i = 1, 2, 3, 4) for n ≥ 3. Since 0 < x < 9
10 ,

265n−371
266n−526 > 9

10

and 859n−1652
926n−1864 > 9

10 , using Lemma 3.9, we have

c (n, 1) = ρ1 (10x− 9) (ξn−1 · · · · · ξ5) > 0 for n ≥ 6,

c (n, 2) = ρ2 (10x− 9) (ξn−2 · · · · · ξ5) > 0 for n ≥ 7,

c (n, 3) = ρ3

(

x− 265n− 371

266n− 526

)

(ξn−3 · · · · · ξ5) > 0 for n ≥ 8,

c (n, 4) = ρ4

(

x− 859n− 1652

926n− 1864

)

(ξn−4 · · · · · ξ5) > 0 for n ≥ 9.

This concludes the proof. �

Finally, by Corollary 3.5, Proposition 3.6 and Proposition 3.7, we obtain:

Theorem 3.10. Let Wα be a weighted shift with a sequence α as in (3.1).
Then Wα is almost-cubically hyponormal but not cubically hyponormal.
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