• Title/Summary/Keyword: cubic spline

Search Result 259, Processing Time 0.024 seconds

AN ERROR BOUND ANALYSIS FOR CUBIC SPLINE APPROXIMATION OF CONIC SECTION

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.741-754
    • /
    • 2002
  • In this paper we present an error bound for cubic spline approximation of conic section curve. We compare it to the error bound proposed by Floater [1]. The error estimating function proposed in this paper is sharper than Floater's at the mid-point of parameter, which means the overall error bound is sharper than Floater's if the estimating function has the maximum at the midpoint.

COMPUTATIONS ON PRECONDITIONING CUBIC SPLINE COLLOCATION METHOD OF ELLIPTIC EQUATIONS

  • Lee, Yong-Hun
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.371-386
    • /
    • 2001
  • In this work we investigate the finite element preconditioning method for the $C^1$-cubic spline collocation discretizations for an elliptic operator A defined by $Au := -{\Delta}u + a_1u_x+a_2u_y+a_0u$ in the unit square with some boundary conditions. We compute the condition number and the numerical solution of the preconditioning system for the several example problems. Finally, we compare the this preconditioning system with the another preconditioning system.

CUBIC SPLINE METHOD FOR SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS

  • Al Said, Eisa-A.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.759-770
    • /
    • 1998
  • In this paper we use uniform cubic spline polynomials to derive some new consistency relations. These relations are then used to develop a numerical method for computing smooth approxi-mations to the solution and its first second as well as third derivatives for a second order boundary value problem. The proesent method out-performs other collocations finite-difference and splines methods of the same order. numerical illustratiosn are provided to demonstrate the practical use of our method.

Preconditioning Cubic Spline Collocation Methods for a Coupled Elliptic Equation

  • Shin, Byeong-Chun;Kim, Sang-Dong
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.3
    • /
    • pp.419-431
    • /
    • 2010
  • A low-order finite element preconditioner is analyzed for a cubic spline collocation method which is used for discretizations of coupled elliptic problems derived from an optimal control problrm subject to an elliptic equation. Some numerical evidences are also provided.

Boundary Integral Equation Method by Cubic Spline (Cubic Spline을 사용한 경계요소법)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1990
  • Dirichlet boundary value problems originated from unsteady deep water wave propagation are transformed to Boundary Intergral Equation Methods by use of a free surface Green's function and the integral equations are discretized by a cubic spline element method. In order to enhance the stability of the numerical model based on the derived Fredholm integral equation of 1 st kind, the method by Hsiao and MacCamy (1973) is employed. The numerical model is tested against exact solutions for two cases and the model shows very good accuracy.

  • PDF

Comparison of the Results of Finite Difference Method in One-Dimensional Advection-Dispersion Equation (유한차분 모형에 의한 일차원 이송-확산방정식 계산결과의 비교)

  • 이희영;이재철
    • Water for future
    • /
    • v.28 no.4
    • /
    • pp.125-136
    • /
    • 1995
  • ELM, a characteristic line based method, was applied to advection-dispersion equation, and the results obtained were compared with those of Eulerian schemes(Stone-Brian and QUICKEST). The calculation methods consisted of Lagrangian interpolation scheme and cubic spline interpolation scheme for the advection calculation, and the Crank-Nicholson scheme for the dispersion calculation. The results of numerical methods were as follows: (1) for Gaussian hill: ELM, using Lagrangian interpolation scheme, gave the most accurate computational result, ELM, using cubic spline interpolation scheme, and QUICKEST scheme gave numerical damping for Peclet number 50. Stone-Brian scheme gave phase shift introduced in the numerical solution for Peclet number 10 and 50. (2) for advanced front: All schemes gave accurate computational results for Peclet number 1 and 4. ELM, Lagrangian interpolation scheme, and Stone,Brian scheme gave dissipation error and ELM, using cubic spline interpolation scheme, and QUICKEST scheme gave numerical oscillation for Peclet number 50.

  • PDF

FLIGHT TRAJECTORY CONTOLLER FOR NONLINEAR MANEUVER(GENERATION OF A DESIRED TRAJECTORY BY SPLINE THEORY)

  • Baba, Yoriaki;Takano, Hiroyuki;Sano, Masaki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.376-379
    • /
    • 1995
  • To force an aircraft to track the specified path, the generation of the smooth desired trajectory is essential. In this paper, the cubic spline function is used to generate the trajectory which passes through the specified intercept points. The simulation results show that the desired trajectory generated by the spline interpolation is very smooth and the aircraft tracks it with small position errors.

  • PDF

A Study of Geometric Modeling for Ship Hull Forms Using Open Uniform B-spline Surface (Open 균일 B-spline 곡면을 이용한 선체 곡면 표현에 관한 연구)

  • H.K. Shin;K.W. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.21-27
    • /
    • 1991
  • This paper outlines the method of formulating the bi-cubic B-spline surface of ship hull, employing the open uniform knot vector as well as the periodic uniform knot vector. An appropriate set of B-spline control vertices to generate the B-spline surface is determined by obtaining the pseudoinverse matrix of basis functions. The comparison between the given offsets and the resulting coordinates from the generated ship hull surface shows a good agreement. To check the fairness of the surface Gaussian curvature is calculated on many small subpatches and displayed on the black-and-white plot of the isoparametric net of the surface.

  • PDF

A COLLOCATION METHOD FOR BIHARMONIC EQUATION

  • Chung, Seiyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.153-164
    • /
    • 1996
  • An $O(h^4)$ cubic spline collocation method for biharmonic equation with a special boundary conditions is formulated and a fast direct method is proposed for the linear system arising when the cubic spline collocation method is employed. This method requires $O(N^2\;{\log}\;N)$ arithmatic operations over an $N{\times}N$ uniform partition.

  • PDF

Comparison of Channel Estimation Schemes for Digital Broadcasting System in a Mobile Environment (이동 환경에서 디지털 방송 시스템을 위한 채널 추정 기법의 성능 비교)

  • Kim, Ki-Nam;Kim, Jin-Ho;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • In this paper, the performances of various channel estimation schemes for DVB-H system are investigated. The linear interpolation, the second order interpolation, the cubic spline interpolation, and the time-domain interpolation, which are used in frequency domain, are chosen as the channel estimation schemes. We derived the performances of Mean Square Error (MSE), Bit Error Rate (BER), and the complexity of calculation in Rayleigh and Rician fading channel through computer simulations. From the simulation results, the cubic spline interpolation shows the best performance under high $E_b/N_0$ environments.

  • PDF