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Abstract. A low-order finite element preconditioner is analyzed for a cubic spline collo-

cation method which is used for discretizations of coupled elliptic problems derived from

an optimal control problrm subject to an elliptic equation. Some numerical evidences are

also provided.

1. Introduction

It is known that the problem to find the state variable u and the control function
θ for a given target state û which minimizes the following functional

(1.1) J (u, θ) =
1

2

∫
Ω

|u− û|2 dx+
δ

2

∫
Ω

|θ|2 dx,

subject to

−∆u+ u = θ in Ω := (−1, 1)2,

u = 0 on ∂Ω,

(1.2)

is called an optimal control problem (see [1], [2] and [6] for example). The constant
δ (0 < δ ≤ 1) in (1.1) is called a penalty parameter which will be used to change a
relative importance of two terms in (1.1). Using the Lagrange multiplier rule, one
may have the coupled optimality system of two elliptic type equations for state and
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adjoint variables (see [6]):

(1.3)


−∆u+ u+

1

δ
v = 0 in Ω,

−∆v + v − u = −û in Ω,

u = v = 0 on ∂Ω.

Here, the following optimality condition is used to get the coupled system of only
state and adjoint variables:

(1.4) −1

δ
v = θ.

There are many ways to discretize (1.3). One of them is to use a C1- interpo-
latory cubic spline for discretizing (1.3) (see [10], [12] and [13] for example). Such
a discretization yields a linear system whose eigenvalue is increasing as the size
of matrix becomes large. Hence, the goal of this paper is to provide a finite ele-
ment preconditioner (see [8], [9], [11] and [12] for example) so that the resulting
preconditioned systems B−1

h WhAh (see (3.17)) with a finite element preconditioner
Bh has eigenvalues which are independent of the size of the linear system. In this
respect, we will show that the real parts of eigenvalues of B−1

h WhAh are positive,
uniformly bounded away from zero and the absolute values of eigenvalues are uni-
formly bounded whose bounds are only dependent on penalty parameter δ in (1.4).

This paper is organized as follows. In section 2, cubic spline collocation methods
for coupled elliptic equations (1.2) is presented. In section 3, the finite element
preconditioner is constructed using the symmetric part of (1.2). The validity of the
finite element preconditioner is analyzed in terms of eigenvalues. Some numerical
evidences for developed theory are provided in section 4. Finally, a conclusion is
given in section 5.

2. Cubic spline collocation method

In this section we review the C1 interpolatory cubic spline generated by Hermite
cubic splines defined on the unit interval I := [0, 1]. Let N be a positive integer and
h = 1

N . With the knots tk = kh, k = 0, · · · , N , the Hermite cubic spline space Sh,3

on I is defined by the set of C1(I) functions whose restrictions on Ik = (tk−1, tk)
are cubic polynomials.

The local Legendre-Gauss([LG]) points {ξi}2N+1
i=0 are given by

(2.1) ξ0 = 0, ξ2i−1 = ti−1 + hη1, ξ2i = ti−1 + hη2, ξ2N+1 = 1

where η1 = 1
2

(
1− 1√

3

)
and η2 = 1

2

(
1 + 1√

3

)
.

Let S0
h,3 be a subspace of Sh,3 whose functions vanish on the boundary. Let

{ϕi }2Ni=1 be the C1 Lagrange interpolatory basis for the space S0
h,3 satisfying

(2.2) ϕi(ξk) = δi,k, 1 ≤ k, i ≤ 2N.
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For the finite element preconditioner, let us denote by V 0
h the space of continuous

piecewise linear functions which break at the collocation points and vanish at end
points. Denote by {ψi}2Ni=1 the nodal basis for the space V 0

h .
For two dimensional function spaces, let S0

h := S0
h,3 ⊗ S0

h,3 and V0
h := V 0

h ⊗ V 0
h

be tensor product function spaces of one-dimensional function spaces, respectively,
and denote by S0

h := S0
h×S0

h and V0
h := V0

h×V0
h. The collocation points are given

by
ξi,j = (ξi, ξj) for i, j,= 1, · · · , 2N.

Denote by the basis functions for S0
h and V0

h

Φi,j(x, y) := ϕi(x)ϕj(y) and Ψi,j(x, y) := ψi(x)ψj(y),

respectively.
We use the standard Sobolev spaces H1(Ω) and H1

0 (Ω) with the usual Sobolev
H1(Ω)-norm ∥ · ∥1 and H1(Ω)-seminorm | · |1. Denote by (·, ·) and ∥ · ∥ be the usual
L2 inner product and L2 norm, respectively. Define a discrete inner product ⟨·, ·⟩N
over the space S0

h as

⟨u, v⟩N =
h2

4

2N∑
i,j=1

u(ξi, ξj) v(ξi, ξj).

For complex functions u = p+ iq and v = r + is, we use the same notation for the
complex inner product and discrete inner product such as

(u, v) := (p+ iq, r − is) and ⟨u, v⟩N := ⟨p+ iq, r − is⟩N .

For matrix functions U and V , define

(U, V ) =
4∑

k=1

(uk, vk) , ∥U∥2 :=
4∑

k=1

∥uk∥2 where U =

[
u1 u2
u3 u4

]
, V =

[
v1 v2
v3 v4

]
.

With a vector function u = [u, v]T , the optimality system given in (1.3) can be
represented by

(2.3) Au := −A∆u+ (A+ C)u = f in Ω,

where

A =

[
1 0
0 1

δ

]
, C =

[
0 1

δ
−1

δ 0

]
, f =

[
0

−1
δ û

]
,

with the zero boundary condition u = 0 on ∂Ω. The differential operator A can be
represented by

Au =

[
A1 u
A2 u

]
:=

[
−∆u+ u+ 1

δ v

−1
δu− 1

δ∆v +
1
δ v

]
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Then, the C1 cubic spline collocation method introduced in [12] is to find uh =
[u1, u2]

T ∈ S0
h satisfying

(2.4) Auh(ξi, ξj) = f(ξi, ξj), 1 ≤ i, j ≤ 2N.

For one dimensional arrangement, we denote by, for i, j = 1, 2, · · · , 2N,

ξµ := ξi,j , Φµ := Φi,j and Ψµ := Ψi,j with µ = 2N(i− 1) + j.

Denote by Nh = (2N)2 the number of the interior collocation points. Let

Rh(µ, ν) = (−∆Φν +Φν)(ξµ) for µ, ν = 1, 2, · · · , Nh

and let INh
be the Nh ×Nh identity matrix.

The algebraic linear system induced by the cubic spline collocation method (2.4)
is given by

(2.5) Ah U = F

where

Ah =

[
Rh

1
δ INh

−1
δ INh

1
δRh

]
, U =

[
uh(ξµ)

]
=

[
U1

U2

]
and F =

[
f(ξµ)

]
=

[
0
F

]
with

U1 =

 u1(ξ1)
...

u1(ξNh
)

 , U2 =

 u2(ξ1)
...

u2(ξNh
)

 , F = −1

δ

 û(ξ1)
...

û(ξNh
)

 .

3. Finite element preconditioner

Consider a simple decoupled elliptic operator B to investigate a finite element
preconditioner:

(3.1) B u := −A∆u+ Au in Ω

with the zero boundary condition. Let Ph be the finite element discretization in the
space V0

h given by

Ph(µ, ν) = (∇Ψµ,∇Ψν) + (Ψµ,Ψν) for µ, ν = 1, 2, · · · , Nh.

Then the finite element discretization for the problem (3.1) in the space V0
h is given

by

(3.2) Bh :=

[
Ph 0
0 1

δPh

]
.
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In this section, we will show that the finite element discretization Bh is an optimal
preconditioner for the matrix Ah induced by the cubic spline collocation method.

3.1. Interpolation operators

Let Jh : V 0
h → S0

h,3 be the interpolation operator such that (Jh χh)(ξi) = χh(ξi)

for i = 1, 2, · · · , 2N and let Jh : V0
h → S0

h be the two dimensional interpolation
operator such that (Jh uh)(ξµ) = uh(ξµ) for µ = 1, 2, · · · , Nh.

In [12], they showed that there exists a constant C > 0 such that

(3.3)
1

C
∥χh∥ ≤ ∥Jh χh∥ ≤ C∥χh∥,

1

C
|χh|1 ≤ |Jh χh|1 ≤ C|χh|1, ∀χh ∈ V 0

h ,

and

(3.4)
1

C
∥uh∥ ≤ ∥Jh uh∥ ≤ C∥uh∥,

1

C
|uh|1 ≤ |Jh uh|1 ≤ C|uh|1, ∀uh ∈ V0

h.

In this paper we use the generic constant C at many places, which does not depend
on mesh size h and N .

Let us define the vector interpolation operator J h : V0
h → S0

h such that, for
uh := [uh, vh]

T ∈ V0
h,

(J huh)(ξµ) :=
[
(Jhuh)(ξµ), (Jhvh)(ξµ)

]T
= uh(ξµ).

Using the equivalence in (3.4), we have the following theorem.

Theorem 3.1. For all uh ∈ V0
h, there exists a positive constant C independent of

h such that

1

C
∥uh∥ ≤ ∥J huh∥ ≤ C∥uh∥ and

1

C
∥uh∥1 ≤ ∥J huh∥1 ≤ C∥uh∥1.

3.2. Analysis on P1 finite element preconditioner

Let us define a bilinear form associating with the operator A:

ah(uh,vh) :=
⟨
Auh,vh

⟩
N

=
⟨
− A∆uh,vh

⟩
N
+
⟨
(A+ C)uh,vh

⟩
N

=
⟨
−∆u1 + u1 +

1

δ
u2, v1

⟩
N
+
⟨
− 1

δ
∆u2 +

1

δ
u2 −

1

δ
u1, v2

⟩
N

(3.5)

for uh = [u1, u2]
T , vh = [v1, v2]

T ∈ S0
h. Then the variational problem associating

with the collocation problem (2.4) is to find uh = [u1, u2]
T ∈ S0

h such that

(3.6) ah(uh,vh) = ⟨f ,vh⟩N for all vh ∈ S0
h.

We also define a bilinear form associating with the operator B:

(3.7) βh(uh,vh) = (B uh,vh) = (∇u1,∇v1) + (u1, v1) +
1

δ
(∇u2,∇v2) +

1

δ
(u2, v2)
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for uh = [u1, u2]
T , vh = [v1, v2]

T ∈ V0
h. Note that the bilinear form βh(·, ·) is

symmetric but the bilinear form ah(·, ·) is not symmetric.

Lemma 3.2. It holds that

(3.8) ⟨−A∆uh,vh⟩N = ⟨uh,−A∆vh⟩N for all uh,vh ∈ S0
h.

Proof. It is enough to show that

⟨−∆u, v⟩N = ⟨u,−∆v⟩N for all u, v ∈ S0
h.

Let us recall Lemma 3.1 in [3] or [12] such that, for f, g ∈ S0
h,3,

(3.9) ⟨f,−g′′⟩N,1 := −h
2

2N∑
i=1

f(ξi)g
′′(ξi) = (f ′, g′) + C

N∑
k=1

f
(3)
k g

(3)
k h5

where f
(3)
k denotes the third derivative of f on Ik and C is an absolute positive

constant. Hence, it follows that the following symmetry for one dimensional case:

⟨f,−g′′⟩N,1 = ⟨g,−f ′′⟩N,1.

Using the above result and the definition of ⟨·, ·⟩N , one may easily show that

⟨
−∆u,v

⟩
N

=
2N∑
i=1

h

2

 2N∑
j=1

h

2

(
− uxx(ξi, ξj)v(ξi, ξj)− uyy(ξi, ξj)v(ξi, ξj)

)
=

2N∑
j=1

h

2

⟨
− uxx(x, ξj), v(x, ξj)

⟩
N,1

+
2N∑
i=1

h

2

⟨
− uyy(ξi, y), v(ξi, y)

⟩
N,1

=
2N∑
j=1

h

2

⟨
− u(x, ξj), vxx(x, ξj)

⟩
N,1

+
2N∑
i=1

h

2

⟨
− u(ξi, y), vyy(ξi, y)

⟩
N,1

=⟨u,−∆v⟩N .

This completes the proof. 2

One may easily see from Lemma 3.2 that the symmetric part of ah(uh,vh) is
given by

ash(uh,vh) :=
⟨
− A∆uh,vh

⟩
N
+
⟨
Auh,vh

⟩
N
.

Lemma 3.3. For all uh ∈ S0
h, there exists a positive constant C such that

(3.10)
1

C
∥uh∥21 ≤ ⟨−∆uh + uh, uh⟩N ≤ C ∥uh∥21.

Proof. From Lemma 3.3 in [3], we have

∥∇uh∥2 ≤ ⟨−∆uh, uh⟩N ≤ 5

3
∥∇uh∥2
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and from Lemma 4.1 and 4.2 in [12] we have

1

C
∥uh∥2 ≤ ⟨uh, uh⟩N ≤ C∥∇uh∥2.

Combining above two inequalities completes the conclusion. 2

The following norm equivalence guarantees the existence and uniqueness of the
solution in S0

h for the variational problem (3.6).

Proposition 3.4. For any real valued vector function uh = [u1, u2]
T ∈ S0

h, there
exists a positive constant C, independent of h, such that

(3.11)
1

C
∥uh∥21,δ ≤ ah(uh,uh) = ash(uh,uh) ≤ C ∥uh∥21,δ,

where the norm ∥uh∥21,δ is defined by

∥uh∥21,δ := ∥u1∥21 +
1

δ
∥u2∥21.

Proof. For uh = [u1, u2]
T ∈ S0

h, one may easily show that ⟨Cuh,uh⟩N = 0. Hence
we have

ah(uh,uh) =
⟨
− A∆uh,uh

⟩
N
+
⟨
Auh,uh

⟩
N

=
⟨
−∆u1 + u1, u1

⟩
N
+

⟨
− 1

δ
∆u2 +

1

δ
u2, u2

⟩
N
.

Using Lemma 3.3 yields the conclusion. 2

Lemma 3.5. Let uh = [u1, u2]
T be a complex vector valued function with u1 =

p1 + iq1 and u2 = p2 + iq2 where p1, q1, p2, q2 ∈ S0
h. It follows that

(3.12) Re
(
ah(uh,uh)

)
= ⟨−A∆uh,uh⟩N + ⟨Auh,uh⟩N = ash(uh,uh),

and there exists a positive constant C, independent of h, such that

(3.13)
1

C
∥uh∥21,δ ≤ Re

(
ah(uh,uh)

)
= ash(uh,uh) ≤ C ∥uh∥21,δ.

Proof. Since the symmetric part of ah(uh,vh) is
⟨
− A∆uh,vh

⟩
N

+
⟨
Auh,vh

⟩
N
,

one may easily show that
⟨
−A∆uh,uh

⟩
N
+
⟨
Auh,uh

⟩
N

is a positive real number.
The following estimation

(3.14) ⟨Cuh,uh⟩N =
1

δ

(
⟨u2, u1⟩N − ⟨u1, u2⟩N

)
=

2i

δ

(
⟨p1, q2⟩N − ⟨p2, q1⟩N

)
shows that ⟨Cuh,uh⟩N is a pure imaginary number. This completes (3.12). Now,
combining (3.12) with Lemma 3.3, we have the conclusion (3.13). 2
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With a complex or real vector function uh = [u1, u2]
T in the space S0

h, denote
by U the vector containing the nodal values of the functions u1 and u2, that is,

U =
(
u1(ξ1), · · · , u1(ξNh

), u2(ξ1), · · · , u2(ξNh
)
)T
.

Then, one may easily check that, for uh,vh ∈ S0
h,

(3.15) ah(uh,vh) = VH
(
WhAh

)
U, with Wh =

[
Wh 0
0 Wh

]
.

where Ah is given in (2.5) and Wh = diag
(

h2

4

)
, and VH denotes the conjugate

transpose of V.
Let λmin(A) and λmax(A) denote the smallest and largest absolute eigenvalues

of a square matrix A, respectively. The spectral radius and the spectrum of a square
matrix A are denoted by ρ(A) and σ(A), respectively.

The generalized field of values of the matrix pair WhAh and Bh is defined as

F(WhAh,Bh) :=

{
VHWhAhV

VHBhV
| V ̸= 0, V ∈ C2Nh

}
.

Then it is well-known that

σ(B−1
h WhAh) ⊂ F(WhAh,Bh).

Theorem 3.6. There exists a positive constants C, independent of h, such that, for
arbitrary eigenvalue λ of the preconditioned matrix B−1

h WhAh,

(3.16) 0 <
1

C
≤ Re(λ) ≤ C and |λ| ≤ C

(
1 +

1

δ

)
.

Proof. Let Vλ = [V1, V2]
T ̸= 0 ∈ C2Nh with Vi = (vi1, vi2, · · · , viNh

)T for i = 1, 2

and let vλ = [v1, v2]
T ∈ V0

h with vi =

Nh∑
µ=1

viµΨµ for i = 1, 2. From the definitions

of the bilinear forms, we have

VH
λ

(
WhAh

)
Vλ = ah(J hvλ,J hvλ) and VH

λ BhVλ = βh(vλ,vλ)

so that

wλ :=
VH

λ

(
WhAh

)
Vλ

VH
λ BhVλ

=
ah(J hvλ,J hvλ)

βh(vλ,vλ)
.

Note from (3.7) that there exists a positive constant C such that

1

C
∥vλ∥21,δ ≤ βh(vλ,vλ) ≤ C ∥vλ∥21,δ.
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By Theorem 3.1, Lemma 3.5 and (3.7), there exists a positive constant C, indepen-
dent of h and δ, such that

Re(wλ) =
Re

(
ah(J hvλ,J hvλ)

)
βh(vλ,vλ)

≤ C
∥J hvλ∥21,δ
∥vλ∥21,δ

≤ C

and

Re(wλ) ≥
1

C

∥J hvλ∥21,δ
∥vλ∥21,δ

≥ 1

C
.

On the other hand, we obtain from (3.14) that

|Im(wλ)| =
|⟨CJ hvλ,J hvλ⟩N |

βh(vλ,vλ)
≤ C

1

δ

∥J hvλ∥2

∥vλ∥21
≤ C

1

δ
.

Thus we have

|wλ| ≤ |Re(wλ)|+ |Im(wλ)| ≤ C

(
1 +

1

δ

)
.

From the fact that
σ(B−1

h WhAh) ⊂ F(WhAh,Bh),

we have the conclusion. 2

Consider the following preconditioned system

(3.17) B−1
h WhAh U = B−1

h WhF,

where the preconditioned matrix can be rewritten by

B−1
h WhAh =

[
P−1

h WhRh 0

0 P−1
h WhRh

]
+

[
0 1

δP
−1
h Wh

−P−1
h Wh 0

]
.

From Theorem 3.6 one may find a constant θ > 0 so that

ρ(I − θB−1
h WhAh) < 1.

Hence, the theorem guarantees the convergence of the following damped Jacobi
iterative method for the preconditioned system:

Uk+1 = (I − θB−1
h WhAh)U

k + θB−1
h WhF.

One may also use the preconditioned Biconjugate Gradient Method (BiCG) or a
generalized minimal residual method (GMRES). See [4], [5], [7], [14] and [15] for
more details.
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4. Numerical results

In this section, using the developed finite element preconditioners we will test an
optimal control problem subject to elliptic differential equation (1.2) with a target
function û(x, y) = sinπx sinπy. Then, we have the following optimality system

(3.1)


−∆u+ u+

1

δ
v = 0 in Ω,

−1

δ
∆v +

1

δ
v − 1

δ
u = −1

δ
sinπx sinπy in Ω,

u = v = 0 on ∂Ω.

Note that the optimality system (3.1) has the exact solution

(3.2) u =
1

1 + δ(1 + 2π2)2
sinπx sinπy, v =

−δ(1 + 2π2)

1 + δ(1 + 2π2)2
sinπx sinπy,

and the exact optimal control is given by

θ = −1

δ
v =

(1 + 2π2)

1 + δ(1 + 2π2)2
sinπx sinπy.

In order to provide evidences of Theorem 3.6, we first consider the distributions of
eigenvalues and condition numbers for the non-preconditioned matrix WhAh and
preconditioned matrix B−1

h WhAh. In Fig 1, one may see from the distributions of
eigenvalues that real parts of eigenvalues of WhAh spread abroad from 5.48e+002
to 1.80e+011 but those of B−1

h WhAh have very small range from 1.00 to 6.59 where
h = 1/N = 1/16 and δ = 10−10.
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Figure 1: Distributions of eigenvalues for WhAh and B−1
h WhAh
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We also show that the range of real parts of eigenvalues for preconditioned
matrix B−1

h WhAh is independent of the penalty parameter δ in Fig 2. But, Fig 3
shows that the condition numbers of B−1

h WhAh are slightly increased as δ decreases
to 0.
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Figure 2: Maximum and minimum of real parts of eigenvalues for WhAh and
B−1
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h WhAh

Now we show the optimal controlability of the cubic spline collocation method.
Let uh = [uh, vh]

T be the approximate solution for the equation (3.1) by the cubic
spline collocation method (2.5). To show the effects of the penalty parameter δ as
δ → 0, we report the L2-norm errors between the target state û and the controlled
state uh, the L

2-norm of optimal control θh = −1
δ vh and the value of the cost
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functional J (uh, θh) with a fixed N = 20 in Table 4.1. From the table, one may
see that the smaller δ is, the better the controlability is, even though the condition
numbers are increased as δ decreases.

δ ∥uh − û∥ ∥θh∥ J (uh, θh)

100 4.9884e-001 2.4053e-002 1.2471e-001

10−3 1.5038e-001 7.2509e+000 3.7594e-002

10−6 2.1497e-004 1.0365e+001 5.3741e-005

10−9 2.1510e-007 1.0370e+001 5.3764e-008

10−12 2.1511e-010 1.0370e+001 5.3764e-011

Table. 4.1. The numerical values of optimal control problem with N = 20.
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Figure 4: Desired target function û(x, y) and the controlled function uh(x, y)

5. Concluding remarks

An optimal control problem subject to (1.2) yields coupled elliptic differential
equations (1.3). Any kind of discretizations leads to a nonsymmetric linear systems.
In this paper, the cubic spline collocation method is chosen because it is very accu-
rate but the resulting linear systems have large condition numbers. This situation
now becomes one of disadvantages if one aims at a fast and efficient numerical sim-
ulations for an optimal control problem subject to even a simple elliptic differential
equation like (1.2). To overcome such a disadvantage, the lower-order finite element
preconditioner is proposed so that the preconditioned linear system can be solved
fast by iteration methods designed for nonsymmetric linear systems, like BiCG,
GMRES, etc..
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