• Title/Summary/Keyword: cubic field

Search Result 233, Processing Time 0.026 seconds

DETERMINATION OF CLASS NUMBERS OR THE SIMPLEST CUBIC FIELDS

  • Kim, Jung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.4
    • /
    • pp.595-606
    • /
    • 2001
  • Using p-adic class number formula, we derive a congru-ence relation for class numbers of the simplest cubic fields which can be considered as a cubic analogue of Ankeny-Artin-Chowlas theo-rem, Furthermore, we give an elementary proof for an upper bound for the class numbers of the simplest cubic fields.

  • PDF

UNIT GROUPS OF QUOTIENT RINGS OF INTEGERS IN SOME CUBIC FIELDS

  • Harnchoowong, Ajchara;Ponrod, Pitchayatak
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.789-803
    • /
    • 2017
  • Let $K={\mathbb{Q}}({\alpha})$ be a cubic field where ${\alpha}$ is an algebraic integer such that $disc_K({\alpha})$ is square-free. In this paper we will classify the structure of the unit group of the quotient ring ${\mathcal{O}}_K/A$ for each non-zero ideal A of ${\mathcal{O}}_K$.

Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach (Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산)

  • Hojing Kim;Hie-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.395-405
    • /
    • 1973
  • By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting 1O Dq in $KNiF_3$ is calculated from first principles. Numerical values of covalency parameters and necessary integrals are quoted from Sugano and Shulman. The result, 7100$cm^{-1}$, is in excellent agreement with the observed value, 7250$cm^{-1}$. It is found that higher order perturbation energy correction is of the same order of magnitude as 10 Dq itself and is, therefore, essential tin calculating 10 Dq from first principles. It is also found that the point charge potential is the dominant part of the crystal field potential.

  • PDF

RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

  • Byeon, Dongho;Jeong, Keunyoung;Kim, Nayoung
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars ResKLE decomposes (up to isogeny) into abelian varieties over K $$Res^L_KE{\sim}{\bigoplus_{F{\in}S}}A_F,$$ where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then AL is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L=K({\sqrt[3]{D}})$ is the cyclic cubic extension of K for some D ∈ K×/(K×)3, E = Ea : y2 = x3 + a is an elliptic curve with j-invariant 0 defined over K, and EaD : y2 = x3 + aD2 is the cubic twist of Ea. In this case, we prove AL is isogenous over K to $E_a^D{\times}E_a^{D^2}$ and a property of the Selmer rank of AL, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

GALOIS STRUCTURES OF DEFINING FIELDS OF FAMILIES OF ELLIPTIC CURVES WITH CYCLIC TORSION

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The author with C. H. Kim and Y. Lee constructed infinite families of elliptic curves over cubic number fields K with prescribed torsion groups which occur infinitely often. In this paper, we examine the Galois structures of such cubic number fields K for the families of elliptic curves with cyclic torsion.

Transient Linear Elastodynamic Analysis by the Finite Element Method (유한요소법을 이용한 과도 선형 동탄성 해석)

  • Hwang, Eun-Ha;Oh, Guen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • A new finite element equation is derived by applying quadratic and cubic time integration scheme to the variational formulation in time-integral for the analysis of the transient elastodynamic problems to increase the numerical accuracy and stability. Emphasis is focused on methodology for cubic time integration scheme procedure which are never presented before. In this semidiscrete approximations of the field variables, the time axis is divided equally and quadratic and cubic time variation is assumed in those intervals, and space is approximated by the usual finite element discretization technique. It is found that unconditionally stable numerical results are obtained in case of the cubic time variation. Some numerical examples are given to show the versatility of the presented formulation.

  • PDF