HILBERT 3-CLASS FIELD TOWERS OF REAL CUBIC FUNCTION FIELDS

Hwanyup Jung*

Abstract

In this paper we study the infiniteness of Hilbert 3class field tower of real cubic function fields over $\mathbb{F}_{q}(T)$, where $q \equiv$ $1 \bmod 3$. We also give various examples of real cubic function fields whose Hilbert 3 -class field tower is infinite.

1. Introduction

Let $k=\mathbb{F}_{q}(T)$ be a rational function field over the finite field \mathbb{F}_{q} of q and $\mathbb{A}=\mathbb{F}_{q}[T]$. For a finite separable extension F of k, write \mathcal{O}_{F} for the integral closure of \mathbb{A} in F. Let ∞ be the infinite place of k and $S_{\infty}(F)$ be the set of places of F lying over ∞. Let ℓ be a prime number. The Hilbert ℓ-class field of F is the maximal unramified abelian ℓ-extension of F in which every places $\nu_{\infty} \in S_{\infty}(F)$ splits completely. Let $F_{0}^{(\ell)}=F$ and inductively, $F_{n+1}^{(\ell)}$ be the Hilbert ℓ-class field of $F_{n}^{(\ell)}$ for $n \geq 0$ (cf. [4]). Then the sequence of fields

$$
F_{0}^{(\ell)}=F \subset F_{1}^{(\ell)} \subset \cdots \subset F_{n}^{(\ell)} \subset \cdots
$$

is called the Hilbert ℓ-class field tower of F and we say that the Hilbert ℓ-class field tower of F is infinite if $F_{n}^{(\ell)} \neq F_{n+1}^{(\ell)}$ for each $n \geq 0$. For a multiplicative abelian group A, let $r_{\ell}(A)=\operatorname{dim}_{\mathbb{F}_{\ell}}\left(A / A^{\ell}\right)$ be the the ℓ-rank of A. Let $\mathcal{C} l_{F}$ and \mathcal{O}_{F}^{*} be the ideal class group and the group of units of \mathcal{O}_{F}, respectively. Schoof [6] proved that the Hilbert ℓ-class field tower of F is infinite if

$$
\begin{equation*}
r_{\ell}\left(\mathcal{C} l_{F}\right) \geq 2+2 \sqrt{r_{\ell}\left(\mathcal{O}_{F}^{*}\right)+1} \tag{1.1}
\end{equation*}
$$

[^0]In [1], Ahn and Jung studied the infiniteness of the Hilbert 2-class field tower of imaginary quadratic function fields. Assume that q is odd with $q \equiv 1 \bmod 3$. In [3], we studied the infiniteness of the Hilbert 3-class field tower of imaginary cubic function fields. By a real cubic function field, we always mean a finite (geometric) cyclic extension F over k of degree 3 in which ∞ splits completely. The aim of this paper is to study the infiniteness of the Hilbert 3 -class field tower of real cubic function fields and give a various examples of real cubic function fields which have infinite Hilbert 3-class field tower.

2. Preliminaries

2.1. Rédei matrix and the invariant λ_{2}

Assume that q is odd with $q \equiv 1 \bmod 3$. Fix a generator γ of \mathbb{F}_{q}^{*}. Let $\mathcal{P}(\mathbb{A})$ be the set of all monic irreducible polynomials in \mathbb{A}. Assume that we have given a total ordering " $<$ " on the set $\mathcal{P}(\mathbb{A})$ such that $P<Q$ for any $P, Q \in \mathcal{P}(\mathbb{A})$ with $\operatorname{deg} P<\operatorname{deg} Q$. Then any real cubic function field F can be written as $F=k(\sqrt[3]{D})$, where $D=P_{1}^{r_{1}} \cdots P_{t}^{r_{t}}$ with $P_{i} \in \mathcal{P}(\mathbb{A}), r_{i} \in\{1,2\}$ for $2 \leq i \leq t$ and $3 \mid \operatorname{deg} D$. If we assume that $P_{1}<\cdots<P_{t}$ and $r_{1}=1$, then D is uniquely determined by F, and we denote $D_{F}=D$. We say that D_{F} is special if $3 \mid \operatorname{deg} P_{i}$ for all $1 \leq i \leq t$. Let σ be a generator of $G=\operatorname{Gal}(F / k)$. We have

$$
(2.1)_{3}\left(\mathcal{C} l_{F}\right)=\operatorname{dim}_{\mathbb{F}_{3}}\left(\mathcal{C} l_{F} / \mathcal{C} l_{F}^{(1-\sigma)}\right)+\operatorname{dim}_{\mathbb{F}_{3}}\left(\mathcal{C} l_{F}^{(1-\sigma)} / \mathcal{C} l_{F}^{(1-\sigma)^{2}}\right) .
$$

Put

$$
\lambda_{i}(F)=\operatorname{dim}_{\mathbb{F}_{3}}\left(\mathcal{C} l_{F}^{(1-\sigma)^{i-1}} / \mathcal{C} l_{F}^{(1-\sigma)^{i}}\right) \quad(i=1,2) .
$$

For $0 \neq N \in \mathbb{A}$, write $\omega(N)$ for the number of distinct monic irreducible divisors of N. Then, by the Genus theory (see [2, Corollary 3.5]), we have

$$
\lambda_{1}(F)= \begin{cases}\omega\left(D_{F}\right)-1, & \text { if } D_{F} \text { is special }, \tag{2.2}\\ \omega\left(D_{F}\right)-2, & \text { otherwise }\end{cases}
$$

Let $\eta=\gamma^{\frac{q-1}{3}}$. Let M_{F} be the $t \times t$ matrix $\left(e_{i j}\right)_{1 \leq i, j \leq t}$ over \mathbb{F}_{3}, where, for $1 \leq i \neq j \leq t, e_{i j} \in \mathbb{F}_{3}$ is defined by $\eta^{e_{i j}}=\left(\frac{P_{i}}{P_{j}}\right)_{3}$, and the diagonal entries $e_{i i}$ are defined to satisfy the relation $\sum_{i=1}^{t} r_{j} e_{i j}=0$. Let $d_{i} \in \mathbb{F}_{3}$ be defined by $d_{i} \equiv \operatorname{deg} P_{i} \bmod 3$ for $1 \leq i \leq t$. We associate a $(t+1) \times t$ matrix R_{F} over \mathbb{F}_{3} to F as follows:

- If D_{F} is non-special or D_{F} is special with $\gamma \in N_{F / k}\left(\mathcal{O}_{F}^{*}\right)$, then R_{F} is the $(t+1) \times t$ matrix obtained from M_{F} by adjoining $\left(d_{1}, \ldots, d_{t}\right)$ in last row.
- If D_{F} is special with $\gamma \notin N_{F / k}\left(\mathcal{O}_{F}^{*}\right)$, then R_{F} is the $(t+1) \times t$ matrix obtained from M_{F} by adjoining ($e_{B 1}, \ldots, e_{B t}$) in last row, where $B \in \mathbb{A}$ is a monic polynomial such that $B=\mathcal{N}(\mathfrak{B}), \mathfrak{B}^{\sigma-1}=x \mathcal{O}_{F}$, $N_{F / k}(x) \in \mathbb{F}_{q}^{*} \backslash \mathbb{F}_{q}^{* 3}$ and $e_{B i} \in \mathbb{F}_{3}$ is defined by $\eta^{e_{i B}}=\left(\frac{P_{i}}{B}\right)$.
Then we have (see [2, Corollary 3.8])

$$
\begin{equation*}
\lambda_{2}(F)=\omega\left(D_{F}\right)-1-\operatorname{rank} R_{F} . \tag{2.3}
\end{equation*}
$$

Hence, by inserting (2.2) and (2.3) into (2.1), we have

$$
r_{3}\left(\mathcal{C} l_{F}\right)= \begin{cases}2 \omega\left(D_{F}\right)-2-\operatorname{rank} R_{F}, & \text { if } D_{F} \text { is special }, \tag{2.4}\\ 2 \omega\left(D_{F}\right)-3-\operatorname{rank} R_{F}, & \text { otherwise }\end{cases}
$$

2.2. Some lemmas

Let E and K be finite (geometric) separable extensions of k such that E / K is a cyclic extension of degree ℓ, where ℓ is a prime number not dividing q. Let $\gamma_{E / K}$ be the number of prime ideals of \mathcal{O}_{K} that ramify in E and $\rho_{E / K}$ be the number of places $\mathfrak{p}_{\infty} \in S_{\infty}(K)$ that ramify or inert in E. If

$$
\begin{equation*}
\gamma_{E / K} \geq\left|S_{\infty}(K)\right|-\rho_{E / K}+3+2 \sqrt{\ell\left|S_{\infty}(K)\right|+(1-\ell) \rho_{E / K}+1} \tag{2.5}
\end{equation*}
$$

then E has infinite Hilbert ℓ-class field tower (see [1, Proposition 2.1]). By using this criterion, we give some sufficient conditions for a real cubic function field to have infinite Hilbert 3 -class field tower. For $D \in \mathbb{A}$, write $\pi(D)$ for the set of all monic irreducible divisors of D.

Lemma 2.1. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be a real cubic function field over k. If there is a nonconstant monic polynomial D^{\prime} such that $3 \mid \operatorname{deg} D^{\prime}, \pi\left(D^{\prime}\right) \subset \pi\left(D_{F}\right)$ and $\left(\frac{D^{\prime}}{P_{i}}\right)_{3}=1$ for $P_{i} \in \pi(D) \backslash \pi\left(D^{\prime}\right)$ ($1 \leq i \leq 5$), then F has infinite Hilbert 3-class field tower.

Proof. Put $K=k\left(\sqrt[3]{D^{\prime}}\right)$ and $E=F K$. Since $\gamma_{E / K} \geq 15,\left|S_{\infty}(K)\right|=$ 3 and $\rho_{E / K}=0$, the inequality (2.5) is satisfied, so E has infinite Hilbert 3 -class field tower. By hypothesis, $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ and ∞ split completely in K, so E is contained in $F_{1}^{(3)}$. Hence F also has infinite Hilbert 3 -class field tower.

Lemma 2.2. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be a real cubic function field over k. If there are two distinct nonconstant monic polynomials D_{1}, D_{2} such that $3 \mid \operatorname{deg} D_{i}, \pi\left(D_{i}\right) \subset \pi\left(D_{F}\right)$ for $i=1,2$ and
$\left(\frac{D_{1}}{P_{j}}\right)_{3}=\left(\frac{D_{2}}{P_{j}}\right)_{3}=1$ for some $P_{j} \in \pi\left(D_{F}\right) \backslash\left(\pi\left(D_{1}\right) \cup \pi\left(D_{2}\right)\right)(1 \leq j \leq 3)$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K=k\left(\sqrt[3]{D_{1}}, \sqrt[3]{D_{2}}\right)$ and $E=F K$. Since $\gamma_{E / K} \geq 27$, $\left|S_{\infty}(K)\right|=9$ and $\rho_{E / K}=0$, the inequality (2.5) is satisfied, so E has infinite Hilbert 3 -class field tower. By hypothesis, P_{1}, P_{2}, P_{3} and ∞ split completely in K, so E is contained in $F_{1}^{(3)}$. Hence F also has infinite Hilbert 3-class field tower.

3. Hilbert 3-class field tower of real cubic function field

Assume that q is odd with $q \equiv 1 \bmod 3$. In this section we give several sufficient conditions for real cubic function fields to have infinite Hilbert 3-class field tower and examples.

Let F be a real cubic function field. Since $r_{3}\left(\mathcal{O}_{F}^{*}\right)=2$, by Schoof's theorem, the Hilbert 3 -class field tower of F is infinite if $r_{3}\left(\mathcal{C} l_{F}\right) \geq 6$. By (2.2), F has infinite Hilbert 3-class field tower if $\omega\left(D_{F}\right) \geq 7$ or $\omega\left(D_{F}\right) \geq 8$ according as D_{F} is special or not. We will consider the cases that $\omega\left(D_{F}\right) \leq 6$ if D_{F} is special and $\omega\left(D_{F}\right) \leq 7$ if D_{F} is non-special.

Theorem 3.1. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be a real cubic function field.
(i) Assume that D_{F} is special. If $\omega\left(D_{F}\right)=6$ with rank $R_{F} \leq 4$, $\omega\left(D_{F}\right)=5$ with rank $R_{F} \leq 2$ or $\omega\left(D_{F}\right)=4$ with $\operatorname{rank} R_{F}=0$, then F has infinite Hilbert 3-class field tower.
(ii) Assume that D_{F} is non-special. If $\omega\left(D_{F}\right)=7$ with $\operatorname{rank} R_{F} \leq 5$, $\omega\left(D_{F}\right)=6$ with rank $R_{F} \leq 3$ or $\omega\left(D_{F}\right)=5$ with $\operatorname{rank} R_{F} \leq 1$, then F has infinite Hilbert 3-class field tower.

Proof. By using the Schoof's theorem with (2.4), we see that F has infinite Hilbert 3 -class field tower if

$$
\operatorname{rank} R_{F} \leq \begin{cases}2 \omega\left(D_{F}\right)-8, & \text { if } D_{F} \text { is special, } \\ 2 \omega\left(D_{F}\right)-9, & \text { if } D_{F} \text { is non-special. }\end{cases}
$$

Hence the result follows immediately.
Theorem 3.2. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be a real cubic function field with $\omega\left(D_{F}\right) \geq 6$. If there exists $Q \in \pi\left(D_{F}\right)$ with $3 \mid \operatorname{deg} Q$ and $P_{i} \in \pi\left(D_{F}\right) \backslash\{Q\}$ such that $\left(\frac{Q}{P_{i}}\right)_{3}=1(1 \leq i \leq 5)$, then F has infinite Hilbert 3-class field tower.

Proof. By applying Lemma 2.1 with $D^{\prime}=Q$, we see that F has infinite Hilbert 3-class field tower.

Example 3.3. Let $k=\mathbb{F}_{7}(T)$ and $\mathbb{A}=\mathbb{F}_{7}[T]$. Take $Q=T^{3}+2 T^{2}+1$, $P_{1}=T, P_{2}=T+2, P_{3}=T+3, P_{4}=T^{2}+2$ and $P_{5}=T^{3}+T+1$. By simple computations, we see that $\left(\frac{Q}{P_{i}}\right)_{3}=1$ for $1 \leq i \leq 5$. Then, for any $D=Q^{e} P_{1}^{e_{1}} P_{2}^{e_{2}} P_{3}^{e_{3}} P_{4}^{e_{4}} P_{5}^{e_{5}}$ with $e, e_{i} \in\{1,2\}$ and $e_{1}+e_{2}+e_{3}+2 e_{4} \equiv$ $0 \bmod 3, k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.2.

Let $N(n, q)$ be the number of monic irreducible polynomials of degree n in $\mathbb{A}=\mathbb{F}_{q}[T]$. Then it satisfies the following one ([5, Corollary of Proposition 2.1]):

$$
N(n, q)=\frac{1}{n} \sum_{d \mid n} \mu(d) q^{\frac{n}{d}}
$$

For $\alpha \in \mathbb{F}_{q}^{*}$, let $\mathcal{N}(n, \alpha, q)$ be the set of monic irreducible polynomials of degree n with constant term α in $\mathbb{A}=\mathbb{F}_{q}[T]$ and $N(n, \alpha, q)=$ $|\mathcal{N}(n, \alpha, q)|$. Define

$$
D_{n}=\left\{r: r \mid\left(q^{n}-1\right), r \nmid\left(q^{m}-1\right) \text { for } m<n\right\} .
$$

For each $r \in D_{n}$, let $r=m_{r} d_{r}$, where $d_{r}=\operatorname{gcd}\left(r, \frac{q^{n}-1}{q-1}\right)$. In [7], Yucas proved that $N(n, \alpha, q)$ satisfies the following formula:

$$
\begin{equation*}
N(n, \alpha, q)=\frac{1}{n \phi(f)} \sum_{\substack{r \in D_{n} \\ m_{r}=f}} \phi(r) \tag{3.1}
\end{equation*}
$$

where f is the order of α in \mathbb{F}_{q}^{*}.
Example 3.4. Let $k=\mathbb{F}_{7}(T)$ and $\mathbb{A}=\mathbb{F}_{7}[T]$. We will find the number $N(3,1,7)$. We have
$D_{3}=\left\{r: r \mid\left(7^{3}-1\right), r \nmid\left(7^{2}-1\right), r \nmid(7-1)\right\}=\{9,18,19,38,57,114,171,342\}$
and $m_{9}=1, m_{18}=6, m_{19}=1, m_{38}=2, m_{57}=1, m_{114}=2, m_{171}=3$, $m_{342}=6$. Since the order of 1 in \mathbb{F}_{7}^{*} is 1 , by (3.1), we have

$$
N(3,1,7)=\frac{1}{3 \phi(1)}(\phi(9)+\phi(19)+\phi(57))=20
$$

Hence, $\mathcal{N}(3,1,7)$ consists of exactly 20 distinct monic irreducible polynomials. Take $Q=T, P_{1}=T^{2}+\alpha T+1$ with $\alpha \in\{0,3,4\}$ and $P_{2}, P_{3}, P_{4}, P_{5} \in \mathcal{N}(3,1,7)$. Then, for any $D=Q^{e} P_{1}^{e_{1}} P_{2}^{e_{2}} P_{3}^{e_{3}} P_{4}^{e_{4}} P_{5}^{e_{5}}$ with $e, e_{i} \in\{1,2\}$ and $e_{1}+e_{2}+e_{3}+2 e_{4} \equiv 0 \bmod 3$, we have $\left(\frac{Q}{P_{i}}\right)_{3}=1$
for $1 \leq i \leq 5$, so $k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3 -class field tower is infinite by Theorem 3.2.

Theorem 3.5. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be a real cubic function field with $\omega\left(D_{F}\right) \geq 5$. If there exist $Q_{1}, Q_{2} \in \pi\left(D_{F}\right)$ whose degrees are divisible by 3 and $P_{i} \in \pi\left(D_{F}\right) \backslash\left\{Q_{1}, Q_{2}\right\}$ such that $\left(\frac{Q_{1}}{P_{i}}\right)_{3}=\left(\frac{Q_{2}}{P_{i}}\right)_{3}=1(1 \leq i \leq 3)$, then F has infinite Hilbert 3-class field tower.

Proof. By applying Lemma 2.2 with $D_{1}=Q_{1}$ and $D_{2}=Q_{2}$, we see that F has infinite Hilbert 3-class field tower.

Example 3.6. Let $k=\mathbb{F}_{7}(T)$ and $\mathbb{A}=\mathbb{F}_{7}[T]$. Take $P_{1}=T, P_{2}=$ $T+1, P_{3}=T^{2}+1, Q_{1}=T^{3}+T^{2}+1$ and $Q_{2}=T^{3}+T+1$. By simple computations, we see that $\left(\frac{Q_{1}}{P_{i}}\right)_{3}=\left(\frac{Q_{2}}{P_{i}}\right)_{3}=1$ for $1 \leq i \leq 3$. Then, for any $D=P_{1}^{e_{1}} P_{2}^{e_{2}} P_{3}^{e_{3}} Q_{1}^{f_{1}} Q_{2}^{f_{2}}$ with $e_{i}, f_{j} \in\{1,2\}$ and $e_{1}+e_{2}+2 e_{3} \equiv$ $0 \bmod 3, k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.5.

Theorem 3.7. Assume that q is odd with $q \equiv 1 \bmod 3$. Let F be a real cubic function field with non-special D_{F}. Assume that $\omega\left(D_{F}\right)=$ 6 or $\omega\left(D_{F}\right)=7$. If there exist $Q_{1}, Q_{2}, Q_{3} \in \pi\left(D_{F}\right)$ whose degrees are divisible by 3 and $P_{i} \in \pi\left(D_{F}\right) \backslash\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ such that $\left(\frac{Q_{1} Q_{2}}{P_{i}}\right)_{3}=$ $\left(\frac{Q_{1} Q_{3}}{P_{i}}\right)_{3}=1(1 \leq i \leq 3)$, then F has infinite Hilbert 3-class field tower.

Proof. By applying Lemma 2.2 with $D_{1}=Q_{1} Q_{2}$ and $D_{2}=Q_{1} Q_{3}$, we see that F has infinite Hilbert 3 -class field tower.

Example 3.8. Let $k=\mathbb{F}_{7}(T)$ and $\mathbb{A}=\mathbb{F}_{7}[T]$. Take $P_{1}=T, P_{2}=$ $T+2, P_{3}=T^{2}+1, Q_{1}=T^{3}+T+1, Q_{2}=T^{3}+T^{2}+1$ and $Q_{3}=T^{3}+T-1$. By simple computations, we see that

$$
\left(\frac{Q_{i}}{P_{1}}\right)_{3}=\left(\frac{Q_{i}}{P_{3}}\right)_{3}=1(1 \leq i \leq 3),\left(\frac{Q_{1}}{P_{2}}\right)_{3}=\eta^{2},\left(\frac{Q_{2}}{P_{2}}\right)_{3}=\left(\frac{Q_{3}}{P_{2}}\right)_{3}=\eta .
$$

Hence, we have

$$
\left(\frac{Q_{1} Q_{2}}{P_{i}}\right)_{3}=\left(\frac{Q_{1} Q_{3}}{P_{i}}\right)_{3}=1(1 \leq i \leq 3) .
$$

Then, for any $D=P_{1}^{e_{1}} P_{2}^{e_{2}} P_{3}^{e_{3}} Q_{1}^{f_{1}} Q_{2}^{f_{2}}$ with $e_{i}, f_{j} \in\{1,2\}$ and $e_{1}+e_{2}+$ $2 e_{3} \equiv 0 \bmod 3, k(\sqrt[3]{D})$ is a real cubic function field whose Hilbert 3-class field tower is infinite by Theorem 3.7.

References

[1] J. Ahn and H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields. J. Chungcheong Math. Soc. 23 (2010), no. 4, 699-704.
[2] S. Bae, S. Hu, and H. Jung, The generalized Rédei-matrix for function fields. Finite Fields Appl. 18 (2012), no. 4, 760-780.
[3] H. Jung, Hilbert 3-class field towers of imaginary cubic function fields. J. Chungcheong Math. Soc. 26 (2013), no. 1, 161-166.
[4] M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365-378.
[5] , Number theory in function fields. Graduate Texts in Mathematics 210 (2002), Springer-Verlag, New York.
[6] R. Schoof, Algebraic curves over \mathbb{F}_{2} with many rational points. J. Number Theory 41 (1992), no. 1, 6-14.
[7] J. L. Yucas, Irreducible polynomials over finite fields with prescribed trace/prescribed constant term. Finite Fields Appl. 12 (2006), no. 2, 211-221.

Department of Mathematics Education Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received March 18, 2013; Accepted July 08, 2013.
 2010 Mathematics Subject Classification: 11R58, 11R60, 11R18.
 Key words and phrases: Hilbert 3-class field tower, real cubic function field.
 This work was conducted during the research year of the Chungbuk National University in 2012 .

