JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 1, 2013

HILBERT 3-CLASS FIELD TOWERS OF IMAGINARY CUBIC FUNCTION FIELDS

HWANYUP JUNG*

ABSTRACT. In this paper we study the infiniteness of the Hilbert 3-class field tower of imaginary cubic function fields.

1. Introduction

Let $k = \mathbb{F}_q(T)$ be a rational function field over the finite field \mathbb{F}_q , $\infty = (1/T)$ and $\mathbb{A} = \mathbb{F}_q[T]$. For a finite separable extension F of k, write \mathcal{O}_F for the integral closure of \mathbb{A} in F and H_F for the Hilbert class field of F with respect to \mathcal{O}_F (cf. [3]). Let ℓ be a prime number. Let $F_1^{(\ell)}$ be the Hilbert ℓ -class field of $F_0^{(\ell)} = F$, i.e., $F_1^{(\ell)}$ is the maximal ℓ -extension of F inside H_F , and inductively, $F_{n+1}^{(\ell)}$ be the Hilbert ℓ -class field of $F_n^{(\ell)}$ for $n \geq 1$. Then we obtain a sequence of fields

$$F_0^{(\ell)} = F \subset F_1^{(\ell)} \subset \cdots \subset F_n^{(\ell)} \subset \cdots,$$

which is called the Hilbert ℓ -class field tower of F. We say that the Hilbert ℓ -class field tower of F is infinite if $F_n^{(\ell)} \neq F_{n+1}^{(\ell)}$ for each $n \geq 0$. For a multiplicative abelian group A, write $r_\ell(A) = \dim_{\mathbb{F}_\ell}(A/A^\ell)$, which is called the the ℓ -rank of A. Let $\mathcal{C}l_F$ be the ideal class group of \mathcal{O}_F and \mathcal{O}_F^* be the group of units of \mathcal{O}_F . In [4], Schoof proved that the Hilbert ℓ -class field tower of F is infinite if $r_\ell(\mathcal{C}l_F) \geq 2 + 2\sqrt{r_\ell(\mathcal{O}_F^*) + 1}$.

Assume that q is odd with $q \equiv 1 \mod 3$. By an *imaginary cubic* function field, we always mean a finite (geometric) cyclic extension F over k of degree 3 in which ∞ is ramified. In [1], Ahn and Jung studied the infiniteness of the Hilbert 2-class field tower of imaginary quadratic

Received October 29, 2012; Accepted January 11, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 11R58, 11R60, 11R18.

Key words and phrases: Hilbert 3-class field tower, imaginary cubic function field. This work was supported by the research grant of the Chungbuk National University in 2012.

Hwanyup Jung

function fields. The aim of this paper is to study the infiniteness of the Hilbert 3-class field tower of imaginary cubic function fields.

2. Preliminaries

2.1. Rédei matrix

Assume that q is odd with $q \equiv 1 \mod 3$. Fix a generator γ of \mathbb{F}_q^* . Write \mathcal{P} for the set of all monic irreducible polynomials in \mathbb{A} . Any cubic function field F can be written as $F = k(\sqrt[3]{D})$, where $D = aP_1^{r_1} \cdots P_t^{r_t}$ with $a \in \{1, \gamma\}$ and $P_i \in \mathcal{P}, r_i \in \{1, 2\}$ for $1 \leq i \leq t$. Then $F = k(\sqrt[3]{D})$ is imaginary if and only if $3 \nmid \deg D$. Let σ be a generator of G = Gal(F/k). Then we have

(2.1)
$$r_3(\mathcal{C}l_F) = \lambda_1(F) + \lambda_2(F)$$

where $\lambda_i(F) = \dim_{\mathbb{F}_3} \left(\mathcal{C}l_F^{(1-\sigma)^{i-1}} / \mathcal{C}l_F^{(1-\sigma)^i} \right)$ for i = 1, 2. By the Genus theory, $\lambda_1(F) = t - 1$. Put $\eta = \gamma^{\frac{q-1}{3}}$. Let $R'_F = (e_{ij})_{1 \le i,j \le t}$ be a $t \times t$ matrix over \mathbb{F}_3 , where $e_{ij} \in \mathbb{F}_3$ is defined by $\eta^{e_{ij}} = (\frac{P_i}{P_j})_3$ for $1 \le i \ne j \le t$ and the diagonal entries e_{ii} are defined by the relation $\sum_{i=1}^{t} r_j e_{ij} = 0$ or $d_i + \sum_{i=1}^t r_j e_{ij} = 0$ according as a = 1 or $a = \gamma$. Let $d_i \in \mathbb{F}_3$ be defined by deg $P_i \equiv d_i \mod 3$ for $1 \leq i \leq t$. Let R_F be the $(t+1) \times t$ matrix over \mathbb{F}_3 obtained from R'_F by adjoining $(d_1 \cdots d_t)$ in the last row. Then we have $\lambda_2(F) = t - \operatorname{rank} R_F$ ([2, Corollary 3.8]). Let ϑ_F be 0 or 1 according as a = 1 or $a = \gamma$. Using the relation $\sum_{i=1}^{t} r_j e_{ij} = 0$ or $d_i + \sum_{i=1}^t r_j e_{ij} = 0$ according as a = 1 or $a = \gamma$, it can be shown that rank $\overline{R_F} = 1 - \vartheta_F + \operatorname{rank} R'_F$. Therefore, we have

(2.2)
$$\lambda_2(F) = t - 1 + \vartheta_F - \operatorname{rank} R'_F.$$

2.2. Martinet's inequality

For a finite separable extension F of k, write $S_{\infty}(F)$ for the set of all primes of F lying above ∞ .

PROPOSITION 2.1. Let E and K be finite (geometric) separable extensions of k such that E/K is a cyclic extension of degree ℓ , where ℓ is a prime number not dividing q. Let $\gamma_{E/K}$ be the number of prime ideals of \mathcal{O}_K that ramify in E and $\rho_{E/K}$ be the number of places \mathfrak{p}_{∞} in $S_{\infty}(K)$ that ramify or inert in E. If

$$\gamma_{E/K} \ge |S_{\infty}(K)| - \rho_{E/K} + 3 + 2\sqrt{\ell}|S_{\infty}(K)| + (1-\ell)\rho_{E/K} + 1,$$

162

then the Hilbert ℓ -class field tower of E is infinite.

For $D \in \mathbb{A}$, write $\pi(D)$ for the set of all monic irreducible divisors of D.

COROLLARY 2.2. Assume that q is odd with $q \equiv 1 \mod 3$. Let $F = k(\sqrt[3]{D})$ be an imaginary cubic function field over k. If there is a nonconstant monic polynomial D' such that $3|\deg D', \pi(D') \subset \pi(D)$ and $(\frac{D'}{P_1})_3 = (\frac{D'}{P_2})_3 = (\frac{D'}{P_3})_3 = 1$ for $P_1, P_2, P_3 \in \pi(D) \setminus \pi(D')$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K = k(\sqrt[3]{D'})$. By hypothesis, P_1, P_2, P_3 and ∞ split completely in K. Hence, E := FK is contained in $F_1^{(3)}$. Applying Proposition 2.1 on E/K with $\gamma_{E/K} \ge 9$ and $|S_{\infty}(K)| = \rho_{E/K} = 3$, we see that E has infinite Hilbert 3-class field tower. Hence F also has infinite Hilbert 3-class field tower. \Box

COROLLARY 2.3. Assume that q is odd with $q \equiv 1 \mod 3$. Let $F = k(\sqrt[3]{D})$ be an imaginary cubic function field over k. If there are two distinct nonconstant monic polynomials D_1, D_2 such that $3|\deg D_i, \pi(D_i) \subset \pi(D)$ for i = 1, 2 and $(\frac{D_1}{P_1})_3 = (\frac{D_1}{P_2})_3 = (\frac{D_2}{P_1})_3 = (\frac{D_2}{P_2})_3 = 1$ for some $P_1, P_2 \in \pi(D) \setminus (\pi(D_1) \cup \pi(D_2))$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K = k(\sqrt[3]{D_1}, \sqrt[3]{D_2})$. By hypothesis, P_1, P_2 and ∞ split completely in K. Hence, E := FK is contained in $F_1^{(3)}$. By applying Proposition 2.1 on E/K with $\gamma_{E/K} \ge 18$ and $|S_{\infty}(K)| = \rho_{E/K} = 9$, we see that E has infinite Hilbert 3-class field tower. Hence F also has infinite Hilbert 3-class field tower. \Box

3. Hilbert 3-class field tower of imaginary cubic function field

Assume that q is odd with $q \equiv 1 \mod 3$. Let $F = k(\sqrt[3]{D})$ be an imaginary cubic function field, where $D = aP_1^{r_1} \cdots P_t^{r_t}$ with $a \in \{1, \gamma\}$, $P_i \in \mathcal{P}, e_i \in \{1, 2\}$ for $1 \leq i \leq t$ and $3 \nmid \deg D$. Since $\mathcal{O}_F^* = \mathbb{F}_q^*$ and $r_3(\mathcal{O}_F^*) = 1$, by Schoof's theorem, the Hilbert 3-class field tower of F is infinite if $r_3(\mathcal{C}l_F) = \lambda_1(F) + \lambda_2(F) \geq 5$. By genus theory, we have $\lambda_1(F) = t - 1$. Hence, if $t \geq 6$, then F has infinite Hilbert 3-class field tower.

Hwanyup Jung

3.1. Case t = 4

In this subsection we will consider the case t = 4 in detail.

THEOREM 3.1. Assume that q is odd with $q \equiv 1 \mod 3$. Let F = $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D = aP_1^{r_1}P_2^{r_2}P_3^{r_3}P_4^{r_4}$. Let ϑ_F be 0 or 1 according as a = 1 or $a = \gamma$. If rank $R'_F \leq 1 + \vartheta_F$, then F has infinite Hilbert 3-class field tower.

Proof. By (2.1) and (2.2), we have $r_3(\mathcal{C}l_F) = 6 + \vartheta_F - \operatorname{rank} R'_F$. Since the Hilbert 3-class field tower of F is infinite if $r_3(\mathcal{C}l_F) \geq 5$, the result follows immediately.

EXAMPLE 3.2. Consider $k = \mathbb{F}_7(T)$. Then $\gamma = 3$ is a generator of \mathbb{F}_7^* and $\eta = 2$. Let $P_1 = T, P_2 = T - 1, P_3 = T^2 + T - 1$ and $P_4 = T^2 - T - 1,$ which are all monic irreducible polynomials in $\mathbb{A} = \mathbb{F}_7[T]$. We have $e_{12} = e_{13} = e_{14} = e_{23} = e_{24} = 0, e_{34} = 1.$ Let $F = k(\sqrt[3]{D})$ with $D = P_1 P_2^2 P_3 P_4$. Then deg $D = 7 \not\equiv 0 \mod 3$, and the matrix R'_F is

whose rank is 1. Hence, F has infinite Hilbert 3-class field tower.

THEOREM 3.3. Assume that q is odd with $q \equiv 1 \mod 3$. Let F = $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D = aP_1^{r_1}P_2^{r_2}P_3^{r_3}P_4^{r_4}$. Then F has infinite Hilbert 3-class field tower if one of the following conditions holds:

- (1) deg $P_4 \equiv 0 \mod 3$ and $(\frac{P_4}{P_1})_3 = (\frac{P_4}{P_2})_3 = (\frac{P_4}{P_3})_3 = 1$, (2) deg $P_3 \equiv \deg P_4 \equiv 0 \mod 3$ and $(\frac{P_3}{P_1})_3 = (\frac{P_3}{P_2})_3 = (\frac{P_4}{P_1})_3 = (\frac{P_4}{P_2})_3 = (\frac{P_4}{P_2})_3$ 1.

Proof. It follows immediately from Corollary 2.2 and Corollary 2.3.

EXAMPLE 3.4. Let $k = \mathbb{F}_7(T)$. Let $P_1 = T, P_2 = T-1, P_3 = T^2 - T - 1$ and $P_4 = T^3 + T - 1$, which are all monic irreducible polynomials in $\mathbb{A} = \mathbb{F}_7[T]$. We have $(\frac{P_4}{P_1})_3 = (\frac{P_4}{P_2})_3 = (\frac{P_4}{P_3})_3 = 1$. Let $D = \gamma P_1 P_2 P_3 P_4$. Hence, the Hilbert 3-class field tower of $F = k(\sqrt[3]{D})$ by Theorem 3.3. But, the matrix R'_F is

$$\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

whose rank is 3. So Theorem 3.1 can't guarantee the infiniteness of Hilbert 3-class field tower of F.

164

3.2. Case t = 5

In this subsection we will consider the case t = 5 in detail.

THEOREM 3.5. Assume that q is odd with $q \equiv 1 \mod 3$. Let F = $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D = aP_1^{r_1}P_2^{r_2}P_3^{r_3}P_4^{r_4}P_5^{r_5}$. Let $R'_F = (e_{ij})_{1 \le i,j \le 5}$ be the 5×5 matrix over \mathbb{F}_3 given in §2.1. If a = 1 with rank $R'_F \le 3$ or $a = \gamma$ with rank $R'_F \le 4$, then F has infinite Hilbert 3-class field tower.

Proof. By (2.1) and (2.2), we have $r_3(\mathcal{C}l_F) = 8 - \operatorname{rank} R'_F$ or $r_3(\mathcal{C}l_F) =$ $9 - \operatorname{rank} R'_F$ according as a = 1 or $a = \gamma$. Since the Hilbert 3-class field tower of F is infinite if $r_3(\mathcal{C}l_F) \geq 5$, the result follows immediately.

EXAMPLE 3.6. Let $k = \mathbb{F}_7(T)$. Let $P_1 = T, P_2 = T - 1, P_3 = T^2 - T - 1, P_4 = T^3 + T - 1$ and $P_5 = T^3 + T - 1$, which are all monic irreducible polynomials in $\mathbb{A} = \mathbb{F}_7[T]$. We have $e_{12} = e_{13} = e_{14} = e_{15} = e_{23} = e_{24} = e_{24}$ $e_{25} = e_{45} = 0, e_{34} = e_{35} = 1.$ Let $F = k(\sqrt[3]{D})$ with $D = P_1 P_2^2 P_3 P_4 P_5.$ Then deg $D = 10 \not\equiv 0 \mod 3$, and the matrix R'_F is

whose rank is 2. Hence, F has infinite Hilbert 3-class field tower.

THEOREM 3.7. Assume that q is odd with $q \equiv 1 \mod 3$. Let F = $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D = aP_1^{r_1}P_2^{r_2}P_3^{r_3}P_4^{r_4}P_5^{r_5}$. Then F has infinite Hilbert 3-class field tower if one of the following conditions holds:

- (1) deg $P_5 \equiv 0 \mod 3$ and $(\frac{P_5}{P_1})_3 = (\frac{P_5}{P_2})_3 = (\frac{P_5}{P_3})_3 = 1$, (2) deg $P_4 \equiv \deg P_5 \equiv 0 \mod 3$ and $(\frac{P_4}{P_1})_3 = (\frac{P_4}{P_2})_3 = (\frac{P_5}{P_1})_3 = (\frac{P_5}{P_2})_3 = (\frac{P_5}{P_2})_3$
- (3) deg $P_3 \equiv \deg P_4 \equiv \deg P_5 \equiv 0 \mod 3$ and the rank of $\begin{pmatrix} e_{13} & e_{14} & e_{15} \\ e_{23} & e_{24} & e_{25} \end{pmatrix}$ is ≤ 1 .

Proof. (1) and (2) follow immediately from Corollary 2.2 and Corollary 2.3, respectively. For (3), by hypothesis, we can choose $x, y, z, w \in$ $\mathbb{F}_{3} \text{ such that } \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} z \\ w \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} e_{13} & e_{14} \\ e_{23} & e_{24} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} e_{13} & e_{15} \\ e_{23} & e_{25} \end{pmatrix} \begin{pmatrix} z \\ w \end{pmatrix}$ $= \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Note that $e_{ij} = e_{ji}$ for $i \neq j$. We have

$$\left(\frac{P_3^x P_4^y}{P_1}\right)_3 = \eta^{xe_{31}+ye_{41}} = 1, \quad \left(\frac{P_3^x P_4^y}{P_2}\right)_3 = \eta^{xe_{32}+ye_{42}} = 1, \\ \left(\frac{P_3^z P_5^w}{P_1}\right)_3 = \eta^{ze_{31}+we_{51}} = 1, \quad \left(\frac{P_3^z P_5^w}{P_2}\right)_3 = \eta^{ze_{32}+we_{52}} = 1.$$

Hwanyup Jung

Since $D_1 = P_3^x P_4^y$ and $D_2 = P_3^z P_5^w$ are nonconstant monic polynomials whose degree are divisible by 3, by Corollary 2.3, F has infinite Hilbert 3-class field tower.

EXAMPLE 3.8. Let $k = \mathbb{F}_7(T)$. Let $P_1 = T$, $P_2 = T - 1$, $P_3 = T^3 + T - 1$, $P_4 = T^3 - 3T + 1$ and $P_5 = T^3 - T - 2$, which are all monic irreducible polynomials in $\mathbb{A} = \mathbb{F}_7[T]$. We have $e_{13} = e_{14} = e_{23} = e_{24} = 0$ and $e_{15} = e_{25} = 2$. Let $D = P_1 P_2 P_3 P_4 P_5$. By Theorem 3.7, the Hilbert 3-class field tower of $F = k(\sqrt[3]{D})$ is infinite.

References

- J. Ahn and H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields. J. Chungcheong Math. Soc. 23 (2010), no 4, 699–704.
- [2] S. Bae, S. Hu and H. Jung, The generalized Rédei matrix for function fields. submitted for publication.
- [3] M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365–378.
- [4] R. Schoof, Algebraic curves over 𝔽₂ with many rational points. J. Number Theory 41 (1992), no. 1, 6–14.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: hyjung@chungbuk.ac.kr

166