HILBERT 3-CLASS FIELD TOWERS OF IMAGINARY CUBIC FUNCTION FIELDS

Hwanyup Jung*

Abstract

In this paper we study the infiniteness of the Hilbert 3 -class field tower of imaginary cubic function fields.

1. Introduction

Let $k=\mathbb{F}_{q}(T)$ be a rational function field over the finite field \mathbb{F}_{q}, $\infty=(1 / T)$ and $\mathbb{A}=\mathbb{F}_{q}[T]$. For a finite separable extension F of k, write \mathcal{O}_{F} for the integral closure of \mathbb{A} in F and H_{F} for the Hilbert class field of F with respect to \mathcal{O}_{F} (cf. [3]). Let ℓ be a prime number. Let $F_{1}^{(\ell)}$ be the Hilbert ℓ-class field of $F_{0}^{(\ell)}=F$, i.e., $F_{1}^{(\ell)}$ is the maximal ℓ-extension of F inside H_{F}, and inductively, $F_{n+1}^{(\ell)}$ be the Hilbert ℓ-class field of $F_{n}^{(\ell)}$ for $n \geq 1$. Then we obtain a sequence of fields

$$
F_{0}^{(\ell)}=F \subset F_{1}^{(\ell)} \subset \cdots \subset F_{n}^{(\ell)} \subset \cdots,
$$

which is called the Hilbert ℓ-class field tower of F. We say that the Hilbert ℓ-class field tower of F is infinite if $F_{n}^{(\ell)} \neq F_{n+1}^{(\ell)}$ for each $n \geq 0$. For a multiplicative abelian group A, write $r_{\ell}(A)=\operatorname{dim}_{\mathbb{F}_{\ell}}\left(A / A^{\ell}\right)$, which is called the the ℓ-rank of A. Let $\mathcal{C} l_{F}$ be the ideal class group of \mathcal{O}_{F} and \mathcal{O}_{F}^{*} be the group of units of \mathcal{O}_{F}. In [4], Schoof proved that the Hilbert ℓ-class field tower of F is infinite if $r_{\ell}\left(\mathcal{C} l_{F}\right) \geq 2+2 \sqrt{r_{\ell}\left(\mathcal{O}_{F}^{*}\right)+1}$.

Assume that q is odd with $q \equiv 1 \bmod 3$. By an imaginary cubic function field, we always mean a finite (geometric) cyclic extension F over k of degree 3 in which ∞ is ramified. In [1], Ahn and Jung studied the infiniteness of the Hilbert 2-class field tower of imaginary quadratic

[^0]function fields. The aim of this paper is to study the infiniteness of the Hilbert 3-class field tower of imaginary cubic function fields.

2. Preliminaries

2.1. Rédei matrix

Assume that q is odd with $q \equiv 1 \bmod 3$. Fix a generator γ of \mathbb{F}_{q}^{*}. Write \mathcal{P} for the set of all monic irreducible polynomials in \mathbb{A}. Any cubic function field F can be written as $F=k(\sqrt[3]{D})$, where $D=a P_{1}^{r_{1}} \cdots P_{t}^{r_{t}}$ with $a \in\{1, \gamma\}$ and $P_{i} \in \mathcal{P}, r_{i} \in\{1,2\}$ for $1 \leq i \leq t$. Then $F=k(\sqrt[3]{D})$ is imaginary if and only if $3 \nmid \operatorname{deg} D$. Let σ be a generator of $G=\operatorname{Gal}(F / k)$. Then we have

$$
\begin{equation*}
r_{3}\left(\mathcal{C} l_{F}\right)=\lambda_{1}(F)+\lambda_{2}(F), \tag{2.1}
\end{equation*}
$$

where $\lambda_{i}(F)=\operatorname{dim}_{\mathbb{F}_{3}}\left(\mathcal{C l} l_{F}^{(1-\sigma)^{i-1}} / \mathcal{C} l_{F}^{(1-\sigma)^{i}}\right)$ for $i=1,2$. By the Genus theory, $\lambda_{1}(F)=t-1$.

Put $\eta=\gamma^{\frac{q-1}{3}}$. Let $R_{F}^{\prime}=\left(e_{i j}\right)_{1 \leq i, j \leq t}$ be a $t \times t$ matrix over \mathbb{F}_{3}, where $e_{i j} \in \mathbb{F}_{3}$ is defined by $\eta^{e_{i j}}=\left(\frac{\bar{P}_{i}}{P_{j}}\right)_{3}$ for $1 \leq i \neq j \leq t$ and the diagonal entries $e_{i i}$ are defined by the relation $\sum_{i=1}^{t} r_{j} e_{i j}=0$ or $d_{i}+\sum_{i=1}^{t} r_{j} e_{i j}=0$ according as $a=1$ or $a=\gamma$. Let $d_{i} \in \mathbb{F}_{3}$ be defined by $\operatorname{deg} P_{i} \equiv d_{i} \bmod 3$ for $1 \leq i \leq t$. Let R_{F} be the $(t+1) \times t$ matrix over \mathbb{F}_{3} obtained from R_{F}^{\prime} by adjoining ($d_{1} \cdots d_{t}$) in the last row. Then we have $\lambda_{2}(F)=t-\operatorname{rank} R_{F}\left(\left[2\right.\right.$, Corollary 3.8]). Let ϑ_{F} be 0 or 1 according as $a=1$ or $a=\gamma$. Using the relation $\sum_{i=1}^{t} r_{j} e_{i j}=0$ or $d_{i}+\sum_{i=1}^{t} r_{j} e_{i j}=0$ according as $a=1$ or $a=\gamma$, it can be shown that $\operatorname{rank} R_{F}=1-\vartheta_{F}+\operatorname{rank} R_{F}^{\prime}$. Therefore, we have

$$
\begin{equation*}
\lambda_{2}(F)=t-1+\vartheta_{F}-\operatorname{rank} R_{F}^{\prime} . \tag{2.2}
\end{equation*}
$$

2.2. Martinet's inequality

For a finite separable extension F of k, write $S_{\infty}(F)$ for the set of all primes of F lying above ∞.

Proposition 2.1. Let E and K be finite (geometric) separable extensions of k such that E / K is a cyclic extension of degree ℓ, where ℓ is a prime number not dividing q. Let $\gamma_{E / K}$ be the number of prime ideals of \mathcal{O}_{K} that ramify in E and $\rho_{E / K}$ be the number of places \mathfrak{p}_{∞} in $S_{\infty}(K)$ that ramify or inert in E. If

$$
\gamma_{E / K} \geq\left|S_{\infty}(K)\right|-\rho_{E / K}+3+2 \sqrt{\ell\left|S_{\infty}(K)\right|+(1-\ell) \rho_{E / K}+1},
$$

then the Hilbert ℓ-class field tower of E is infinite.
For $D \in \mathbb{A}$, write $\pi(D)$ for the set of all monic irreducible divisors of D.

Corollary 2.2. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=k(\sqrt[3]{D})$ be an imaginary cubic function field over k. If there is a nonconstant monic polynomial D^{\prime} such that $3 \mid \operatorname{deg} D^{\prime}, \pi\left(D^{\prime}\right) \subset \pi(D)$ and $\left(\frac{D^{\prime}}{P_{1}}\right)_{3}=\left(\frac{D^{\prime}}{P_{2}}\right)_{3}=\left(\frac{D^{\prime}}{P_{3}}\right)_{3}=1$ for $P_{1}, P_{2}, P_{3} \in \pi(D) \backslash \pi\left(D^{\prime}\right)$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K=k\left(\sqrt[3]{D^{\prime}}\right)$. By hypothesis, P_{1}, P_{2}, P_{3} and ∞ split completely in K. Hence, $E:=F K$ is contained in $F_{1}^{(3)}$. Applying Proposition 2.1 on E / K with $\gamma_{E / K} \geq 9$ and $\left|S_{\infty}(K)\right|=\rho_{E / K}=3$, we see that E has infinite Hilbert 3 -class field tower. Hence F also has infinite Hilbert 3 -class field tower.

Corollary 2.3. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=k(\sqrt[3]{D})$ be an imaginary cubic function field over k. If there are two distinct nonconstant monic polynomials D_{1}, D_{2} such that $3 \mid \operatorname{deg} D_{i}$, $\pi\left(D_{i}\right) \subset \pi(D)$ for $i=1,2$ and $\left(\frac{D_{1}}{P_{1}}\right)_{3}=\left(\frac{D_{1}}{P_{2}}\right)_{3}=\left(\frac{D_{2}}{P_{1}}\right)_{3}=\left(\frac{D_{2}}{P_{2}}\right)_{3}=1$ for some $P_{1}, P_{2} \in \pi(D) \backslash\left(\pi\left(D_{1}\right) \cup \pi\left(D_{2}\right)\right)$, then F has infinite Hilbert 3-class field tower.

Proof. Put $K=k\left(\sqrt[3]{D_{1}}, \sqrt[3]{D_{2}}\right)$. By hypothesis, P_{1}, P_{2} and ∞ split completely in K. Hence, $E:=F K$ is contained in $F_{1}^{(3)}$. By applying Proposition 2.1 on E / K with $\gamma_{E / K} \geq 18$ and $\left|S_{\infty}(K)\right|=\rho_{E / K}=9$, we see that E has infinite Hilbert 3-class field tower. Hence F also has infinite Hilbert 3-class field tower.

3. Hilbert 3-class field tower of imaginary cubic function field

Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=k(\sqrt[3]{D})$ be an imaginary cubic function field, where $D=a P_{1}^{r_{1}} \cdots P_{t}^{r_{t}}$ with $a \in\{1, \gamma\}$, $P_{i} \in \mathcal{P}, e_{i} \in\{1,2\}$ for $1 \leq i \leq t$ and $3 \nmid \operatorname{deg} D$. Since $\mathcal{O}_{F}^{*}=\mathbb{F}_{q}^{*}$ and $r_{3}\left(\mathcal{O}_{F}^{*}\right)=1$, by Schoof's theorem, the Hilbert 3-class field tower of F is infinite if $r_{3}\left(\mathcal{C l} l_{F}\right)=\lambda_{1}(F)+\lambda_{2}(F) \geq 5$. By genus theory, we have $\lambda_{1}(F)=t-1$. Hence, if $t \geq 6$, then F has infinite Hilbert 3-class field tower.

3.1. Case $t=4$

In this subsection we will consider the case $t=4$ in detail.
Theorem 3.1. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=$ $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D=a P_{1}^{r_{1}} P_{2}^{r_{2}} P_{3}^{r_{3}} P_{4}^{r_{4}}$. Let ϑ_{F} be 0 or 1 according as $a=1$ or $a=\gamma$. If rank $R_{F}^{\prime} \leq 1+\vartheta_{F}$, then F has infinite Hilbert 3-class field tower.

Proof. By (2.1) and (2.2), we have $r_{3}\left(\mathcal{C} l_{F}\right)=6+\vartheta_{F}-\operatorname{rank} R_{F}^{\prime}$. Since the Hilbert 3-class field tower of F is infinite if $r_{3}\left(\mathcal{C} l_{F}\right) \geq 5$, the result follows immediately.

Example 3.2. Consider $k=\mathbb{F}_{7}(T)$. Then $\gamma=3$ is a generator of \mathbb{F}_{7}^{*} and $\eta=2$. Let $P_{1}=T, P_{2}=T-1, P_{3}=T^{2}+T-1$ and $P_{4}=T^{2}-T-1$, which are all monic irreducible polynomials in $\mathbb{A}=\mathbb{F}_{7}[T]$. We have $e_{12}=e_{13}=e_{14}=e_{23}=e_{24}=0, e_{34}=1$. Let $F=k(\sqrt[3]{D})$ with $D=P_{1} P_{2}^{2} P_{3} P_{4}$. Then $\operatorname{deg} D=7 \not \equiv 0 \bmod 3$, and the matrix R_{F}^{\prime} is

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

whose rank is 1. Hence, F has infinite Hilbert 3-class field tower.
Theorem 3.3. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=$ $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D=a P_{1}^{r_{1}} P_{2}^{r_{2}} P_{3}^{r_{3}} P_{4}^{r_{4}}$. Then F has infinite Hilbert 3-class field tower if one of the following conditions holds:
(1) $\operatorname{deg} P_{4} \equiv 0 \bmod 3$ and $\left(\frac{P_{4}}{P_{1}}\right)_{3}=\left(\frac{P_{4}}{P_{2}}\right)_{3}=\left(\frac{P_{4}}{P_{3}}\right)_{3}=1$,
(2) $\operatorname{deg} P_{3} \equiv \operatorname{deg} P_{4} \equiv 0 \bmod 3$ and $\left(\frac{P_{3}}{P_{1}}\right)_{3}=\left(\frac{P_{3}}{P_{2}}\right)_{3}=\left(\frac{P_{4}}{P_{1}}\right)_{3}=\left(\frac{P_{4}}{P_{2}}\right)_{3}=$ 1.

Proof. It follows immediately from Corollary 2.2 and Corollary 2.3.

Example 3.4. Let $k=\mathbb{F}_{7}(T)$. Let $P_{1}=T, P_{2}=T-1, P_{3}=T^{2}-T-1$ and $P_{4}=T^{3}+T-1$, which are all monic irreducible polynomials in $\mathbb{A}=\mathbb{F}_{7}[T]$. We have $\left(\frac{P_{4}}{P_{1}}\right)_{3}=\left(\frac{P_{4}}{P_{2}}\right)_{3}=\left(\frac{P_{4}}{P_{3}}\right)_{3}=1$. Let $D=\gamma P_{1} P_{2} P_{3} P_{4}$. Hence, the Hilbert 3-class field tower of $F=k(\sqrt[3]{D})$ by Theorem 3.3. But, the matrix R_{F}^{\prime} is

$$
\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

whose rank is 3 . So Theorem 3.1 can't guarantee the infiniteness of Hilbert 3-class field tower of F.

3.2. Case $t=5$

In this subsection we will consider the case $t=5$ in detail.
Theorem 3.5. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=$ $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D=a P_{1}^{r_{1}} P_{2}^{r_{2}} P_{3}^{r_{3}} P_{4}^{r_{4}} P_{5}^{r_{5}}$. Let $R_{F}^{\prime}=\left(e_{i j}\right)_{1 \leq i, j \leq 5}$ be the 5×5 matrix over \mathbb{F}_{3} given in §2.1. If $a=1$ with rank $R_{F}^{\prime} \leq 3$ or $a=\gamma$ with rank $R_{F}^{\prime} \leq 4$, then F has infinite Hilbert 3-class field tower.

Proof. By (2.1) and (2.2), we have $r_{3}\left(\mathcal{C} l_{F}\right)=8-\operatorname{rank} R_{F}^{\prime}$ or $r_{3}\left(\mathcal{C} l_{F}\right)=$ $9-\operatorname{rank} R_{F}^{\prime}$ according as $a=1$ or $a=\gamma$. Since the Hilbert 3-class field tower of F is infinite if $r_{3}\left(\mathcal{C} l_{F}\right) \geq 5$, the result follows immediately.

Example 3.6. Let $k=\mathbb{F}_{7}(T)$. Let $P_{1}=T, P_{2}=T-1, P_{3}=T^{2}-T-$ $1, P_{4}=T^{3}+T-1$ and $P_{5}=T^{3}+T-1$, which are all monic irreducible polynomials in $\mathbb{A}=\mathbb{F}_{7}[T]$. We have $e_{12}=e_{13}=e_{14}=e_{15}=e_{23}=e_{24}=$ $e_{25}=e_{45}=0, e_{34}=e_{35}=1$. Let $F=k(\sqrt[3]{D})$ with $D=P_{1} P_{2}^{2} P_{3} P_{4} P_{5}$. Then $\operatorname{deg} D=10 \not \equiv 0 \bmod 3$, and the matrix R_{F}^{\prime} is

$$
\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 & 2
\end{array}\right)
$$

whose rank is 2. Hence, F has infinite Hilbert 3-class field tower.
Theorem 3.7. Assume that q is odd with $q \equiv 1 \bmod 3$. Let $F=$ $k(\sqrt[3]{D})$ be an imaginary cubic function field with $D=a P_{1}^{r_{1}} P_{2}^{r_{2}} P_{3}^{r_{3}} P_{4}^{r_{4}} P_{5}^{r_{5}}$. Then F has infinite Hilbert 3-class field tower if one of the following conditions holds:
(1) $\operatorname{deg} P_{5} \equiv 0 \bmod 3$ and $\left(\frac{P_{5}}{P_{1}}\right)_{3}=\left(\frac{P_{5}}{P_{2}}\right)_{3}=\left(\frac{P_{5}}{P_{3}}\right)_{3}=1$,
(2) $\operatorname{deg} P_{4} \equiv \operatorname{deg} P_{5} \equiv 0 \bmod 3$ and $\left(\frac{P_{4}}{P_{1}}\right)_{3}=\left(\frac{P_{4}}{P_{2}}\right)_{3}=\left(\frac{P_{5}}{P_{1}}\right)_{3}=\left(\frac{P_{5}}{P_{2}}\right)_{3}=$ 1,
(3) $\operatorname{deg} P_{3} \equiv \operatorname{deg} P_{4} \equiv \operatorname{deg} P_{5} \equiv 0 \bmod 3$ and the rank of $\left(\begin{array}{lll}e_{13} & e_{14} & e_{15} \\ e_{23} & e_{24} & e_{25}\end{array}\right)$ is ≤ 1.

Proof. (1) and (2) follow immediately from Corollary 2.2 and Corollary 2.3 , respectively. For (3), by hypothesis, we can choose $x, y, z, w \in$ \mathbb{F}_{3} such that $\binom{x}{y} \neq\binom{ 0}{0},\binom{z}{w} \neq\binom{ 0}{0},\left(\begin{array}{cc}e_{13} & e_{14} \\ e_{23} & e_{24}\end{array}\right)\binom{x}{y}=\binom{0}{0}$ and $\left(\begin{array}{cc}e_{13} & e_{15} \\ e_{23} & e_{25}\end{array}\right)\binom{z}{w}$ $=\binom{0}{0}$. Note that $e_{i j}=e_{j i}$ for $i \neq j$. We have

$$
\begin{aligned}
& \left(\frac{P_{3}^{x} P_{4}^{y}}{P_{1}}\right)_{3}=\eta^{x e_{31}+y e_{41}}=1, \quad\left(\frac{P_{3}^{x} P_{4}^{y}}{P_{2}}\right)_{3}=\eta^{x e_{32}+y e_{42}}=1 \\
& \left(\frac{P_{3}^{z} P_{5}^{w}}{P_{1}}\right)_{3}=\eta^{z e_{31}+w e_{51}}=1, \quad\left(\frac{P_{3}^{z} P_{5}^{w}}{P_{2}}\right)_{3}=\eta^{z e_{32}+w e_{52}}=1
\end{aligned}
$$

Since $D_{1}=P_{3}^{x} P_{4}^{y}$ and $D_{2}=P_{3}^{z} P_{5}^{w}$ are nonconstant monic polynomials whose degree are divisible by 3 , by Corollary 2.3, F has infinite Hilbert 3 -class field tower.

Example 3.8. Let $k=\mathbb{F}_{7}(T)$. Let $P_{1}=T, P_{2}=T-1, P_{3}=T^{3}+T-$ $1, P_{4}=T^{3}-3 T+1$ and $P_{5}=T^{3}-T-2$, which are all monic irreducible polynomials in $\mathbb{A}=\mathbb{F}_{7}[T]$. We have $e_{13}=e_{14}=e_{23}=e_{24}=0$ and $e_{15}=e_{25}=2$. Let $D=P_{1} P_{2} P_{3} P_{4} P_{5}$. By Theorem 3.7, the Hilbert 3-class field tower of $F=k(\sqrt[3]{D})$ is infinite.

References

[1] J. Ahn and H. Jung, Hilbert 2-class field towers of imaginary quadratic function fields. J. Chungcheong Math. Soc. 23 (2010), no 4, 699-704.
[2] S. Bae, S. Hu and H. Jung, The generalized Rédei matrix for function fields. submitted for publication.
[3] M. Rosen, The Hilbert class field in function fields. Exposition. Math. 5 (1987), no. 4, 365-378.
[4] R. Schoof, Algebraic curves over \mathbb{F}_{2} with many rational points. J. Number Theory 41 (1992), no. 1, 6-14.
*
Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail: hyjung@chungbuk.ac.kr

[^0]: Received October 29, 2012; Accepted January 11, 2013.
 2010 Mathematics Subject Classification: Primary 11R58, 11R60, 11R18.
 Key words and phrases: Hilbert 3-class field tower, imaginary cubic function field.
 This work was supported by the research grant of the Chungbuk National University in 2012 .

