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GALOIS STRUCTURES OF DEFINING FIELDS OF
FAMILIES OF ELLIPTIC CURVES WITH CYCLIC

TORSION

Daeyeol Jeon*

Abstract. The author with C. H. Kim and Y. Lee constructed
infinite families of elliptic curves over cubic number fields K with
prescribed torsion groups which occur infinitely often. In this paper,
we examine the Galois structures of such cubic number fields K for
the families of elliptic curves with cyclic torsion.

1. Introduction

Over cubic number fields K, it is proved in [4] that all the group
structures occurring infinitely often as torsion groups E(K)tors are ex-
actly the following 38 types:

(1.1) Z/N1Z, N1 = 1− 16, 18, 20
Z/2Z⊕ Z/2N2Z, N2 = 1− 7

where K varies over all cubic number fields and E varies over all elliptic
curves over K. In [3] the author with C. H. Kim and Y. Lee construct
infinite families of elliptic curves with torsion structures in Eq. (1.2) over
cubic number fields K.

In this paper we examine the Galois structures of defining fields of
the constructed infinite families of elliptic curves with cyclic torsion in
[3]. For our purpose, it is sufficient to consider the families of elliptic
curves with cyclic torsion groups which do not occur over Q. That is,
we consider the following groups

(1.2) Z/NZ, N = 11, 13, 14, 15, 16, 18, 20
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2. Preliminaries

The Tate normal form of an elliptic curve with P = (0, 0) as follows:

E = E(b, c) : Y 2 + (1− c)XY − bY = X3 − bX2,

and this is nonsingular if and only if b 6= 0. On the curve E(b, c) we have
the following by the chord-tangent method:

P = (0, 0),(2.1)

2P = (b, bc),

3P = (c, b− c),

4P =
(
r(r − 1), r2(c− r + 1)

)
; b = cr,

5P =
(
rs(s− 1), rs2(r − s)

)
; c = s(r − 1),

6P =
(

s(r − 1)(r − s)
(s− 1)2

,
s2(r − 1)2(rs− 2r + 1)

(s− 1)3

)
.

Very recently, by using the Tate normal form, Sutherland [5] found
optimized forms for defining equations of the modular curves X1(N) for
N = 11, 13− 50.

In fact, the condition NP = O in E(b, c) gives a defining equation
for X1(N). For example, 11P = O implies 5P = −6P , so

x5P = x−6P = x6P ,

where xnP denotes the x-coordinate of the n-multiple nP of P . Eq.
(2.1) implies that

(2.2) rs(s− 1) =
s(r − 1)(r − s)

(s− 1)2
.

Without loss of generality, the cases s = 1 and s = 0 may be excluded.
Then Eq. (2.2) becomes as follows:

r2 − 4sr + 3s2r − s3r + s = 0,

which is one of the equation X1(11), called the raw form of X1(11). By
the coordinate changes s = 1 − x and r = 1 + xy, we get the following
equation:

f(x, y) := y2 + (x2 + 1)y + x = 0.

In this case, b and c can be expressed by x and y as follows:

b =− xy(x− 1)(xy + 1),

c =− xy(x− 1).



Galois structures of defining fields of families of elliptic curves 207

Table 1. Families of elliptic curves E(bN , cN ) and poly-
nomials fN (x, t).

N E(bN , cN ) and fN (x, t)

11 E11(t) := E(b11, c11) with

{
b11 =

t(t+1)(αt+t)
αt

,

c11 =
t(αt+t)

αt
,

where αt is a root of f11(x, t) = x3 − x2 − t2 − t.

13 E13(t) := E(b13, c13) with





b13 =
α2

t (αt−1)(α3
t−αt+t)(α3

t−α2
t +t)

t2(α2
t−αt+t)

,

c13 =
α2

t (αt−1)(α3
t−αt+t)

t(α2
t−αt+t)

,

where αt is a root of f13(x, t) = tx3 − (t + 1)x2 + x + t2 − t.

14 E14(t) := E(b14, c14) with





b14 = − 8(3αt−t−4)(α2
t−2αt−2t+8)(α2

t +2αt−2t−8)

(αt−4)3(α2
t−2αt−2t−8)2

,

c14 = − 8(3αt−t−4)(α2
t +2αt−2t−8)

αt(αt−4)2(α2
t−2αt−2t−8)

,

where αt is a root of f14(x, t) = x3 + x2 − 8x− t2 + 16.

15 E15(t) := E(b15, c15) with





b15 = − αt(α
3
t +tα2

t−tαt−t2)(α3
t +tα2

t−t2)

(α2
t +αt−t)(α3

t +α2
t +tα2

t +tαt−t2)2
,

c15 = − αt(α
3
t +tα2

t−tαt−t2)

(α2
t +αt−t)(α3

t +α2
t +tα2

t +tαt−t2)
,

where αt is a root of f15(x, t) = x3 + x2 − tx− t2 − t.

16 E16(t) := E(b16, c16) with





b16 =
t(t−1)αt(αt−t)(t2αt+αt−t)

(tαt+αt−t)3
,

c16 =
t(t−1)αt(αt−t)

(tαt+αt−t)2
,

where αt is a root of
f16(x, t) = 2t2x3 + (−2t2 + 2t− 1)x2 + (−t2 + 1)x + t2 − t.

18 E18(t) := E(b18, c18) with





b18 = − t(αt−t)(α2
t +t)(α2

t−tαt+t)

(α2
t−t2+t)(α2

t +tαt−t2+t)2
,

c18 = − t(αt−t)(α2
t−tαt+t)

(α2
t−t2+t)(α2

t +tαt−t2+t)
,

where αt is a root of
f18(x, t) = (−t + 1)x3 + (t2 − 1)x2 + (−2t2 + t)x + t2 − t.

20 E20(t) := E(b20, c20) with





b20 =
t((t2−t+1)αt+t3−t2+1)((t−1)αt+t2−t)(t2αt+t3−t+1)

(tαt+t2−t+1)(αt+1)2

c20 =
((t−1)αt+t2−t)(t2αt+t3−t+1)

(tαt+t2−t+1)(αt+1)

where αt is a root of
f20(x, t) = t2x3 + t3x2 − (t3 − 4t2 + 4t− 1)x− t4 + 3t3 − 3t2 + t.

Therefore for each a point (x, y) on X1(11) satisfying f(x, y) = 0 there
is a corresponding elliptic curve E(b, c) defined over K = Q(x, y) such
that E(b, c)tors contains Z/11Z. This is a basic strategy to construct
infinite families of elliptic curves in [3].

Table 1 are taken from [3, Table 1] which contains infinite families
elliptic curves and polynomials whose roots generate defining fields of
that families.
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3. Galois structures of the defining field of the constructed
elliptic curves

In this section we determine the Galois group structure of the defining
field Kt = Q(αt) of the constructed elliptic curves EN (t) where αt is a
root of fN (x, t) for t ∈ Q. For the families of elliptic curves EN (t)
over Kt we prove that the Galois groups of the Galois closures Lt of
Kt over Q are the symmetric group S3 of order 6 for almost all t ∈ Q
with finite exceptions. For the proof, we apply the techniques about
computations of Galois groups of polynomials of degree 3 in [1] and the
following theorem by Faltings.

Theorem 3.1. [2] Let C be a nonsingular curve of genus g ≥ 2 over
a number field K, then the set of K-rational points C(K) is finite.

If C is a singular curve in the affine space A2, then it is understood
that C is a nonsingular projective curve birational to this singular curve.
Suppose C is a plane curve defined by

y2 = f(x)

where f(x) ∈ Q[x] is of degree d and square-free in Q[x]. Then the genus
C is equal to

[
d−1
2

]
where [ · ] is the greatest integer function. Thus if

d ≥ 5, then C(Q) is finite by Faltings’ theorem.
Since Kt = Q(αt) are cubic number fields for almost all t ∈ Q, Gt =

Gal(Lt/Q) are S3 or A3. We will prove that Gt is equal to S3 for
almost all t ∈ Q. According to [1, Theorem 3.6], Gt is S3 if and only
if the discriminant ∆N (t) of fN (x, t) is non-square in Q for t ∈ Q. For
example, in the case N = 13,

∆13(t) = −(t− 1)(27t5 − 31t4 + 6t3 + 6t2 − 5t + 1).

We thus have to determine whether or not the curve

y2 = −(t− 1)(27t5 − 31t4 + 6t3 + 6t2 − 5t + 1)

has finitely many Q-rational points. Since the curve is of genus 2, this
curve has only finitely many Q-rational points, and hence Gt is S3 for
almost all t.

We list discriminants ∆N (t) of fN (x, t) in Table 2. By the exact the
same reason as N = 13, we see that Gt is S3 for almost all t when
N = 16, 18, 20.

Now consider the cases N = 11, 14, 15. In these cases, the curves

y2 = ∆N (t)

are elliptic curves.
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Table 2. Discriminants of fN (x, t)

N ∆N (t)
11 ∆11(t) = −t(t + 1)(27t2 + 27t + 4).
13 ∆13(t) = −(t− 1)(27t5 − 31t4 + 6t3 + 6t2 − 5t + 1).
14 ∆14(t) = −(27t2 − 256)(t2 − 28).
15 ∆15(t) = −t(27t3 + 32t2 + 4t− 4).
16 ∆16(t) = (t− 1)(8t7 − 56t6 + 88t5 − 64t4 + 41t3 − 19t2 + 7t− 1).
18 ∆18(t) = 4t(t− 1)(t2 − t + 1)(t3 − 6t2 + 3t + 1).
20 ∆20(t) = t2(t− 1)2(4t9 − 12t8 + 16t7 − 47t6 + 168t5 − 308t4

+300t3 − 156t2 + 40t− 4).

Consider N = 11. Then we have to determine whether or not the
elliptic curve

E11 : y2 = −t(t + 1)(27t2 + 27t + 4)

has finitely many Q-rational points. That is, whether the Q-rank of E11

is positive or not.
Using Maple we have the Weierstrass form of E11 as follows:

E11 : y2 = t3 +
313
3

t +
10982

27
,

and using Magma, we can compute the Q-rank E11 is equal to 0, and
hence we can conclude that Gt is S3 for almost all t. For N = 14, 15,
the corresponding elliptic curves are as follows:

E14 : y2 = t3 − 3346576
3

t− 12028939648
27

,

E15 : y2 = t3 − 400
3

t− 16400
27

,

and their Q-ranks are zero. Therefore we have the following main result:

Theorem 3.1. Let N = 11, 13, 14, 15, 16, 18, 20, let Et be elliptic
curves defined over Kt = Q(αt) in Table 1. Then, for almost all t ∈ Q,
the Galois group Gal(Lt/Q) is isomorphic to the symmetric group S3

where Lt are Galois closures of Kt over Q.
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