• 제목/요약/키워드: critical Riemannian metrics

검색결과 11건 처리시간 0.019초

Critical rimennian metrics on cosymplectic manifolds

  • Kim, Byung-Hak
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.553-562
    • /
    • 1995
  • In a Recent paper [3], D. Chinea, M. Delon and J. C. Marrero proved that a cosymplectic manifold is formal and constructed an example of compact cosymplectic manifold which is not a global product of a Kaehler manifold with the circle. In this paper we study the compact cosymplectic manifolds with critical Riemannian metrics.

  • PDF

CRITICAL KAHLER SURFACES

  • Kim, Jong-Su
    • 대한수학회보
    • /
    • 제35권3호
    • /
    • pp.421-431
    • /
    • 1998
  • We characterize real 4-dimensional Kahler metrices which are critical for natural quadratic Riemannian functionals defined on the space of all Riemannian metrics. In particular we show that such critical Kahler surfaces are either Einstein or have zero scalar curvature. We also make some discussion on criticality in the space of Kahler metrics.

  • PDF

CONHARMONIC TRANSFORMATION AND CRITICAL RIEMANNIAN METRICS

  • Byung Hak Kim;In Bae Kim;Sun Mi Lee
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.347-354
    • /
    • 1997
  • The conharmonic transforamtion is a conformal transformation which satisfies a specified differential equation. Such a transformation was defined by Y. Ishi and we generalize his results. In particular, we obtain a necessary and sufficient condition for the invariance of critical Riemannian metrics under the conharmonic transformation.

  • PDF

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.

SOME RIGIDITY CHARACTERIZATIONS OF EINSTEIN METRICS AS CRITICAL POINTS FOR QUADRATIC CURVATURE FUNCTIONALS

  • Huang, Guangyue;Ma, Bingqing;Yang, Jie
    • 대한수학회보
    • /
    • 제57권6호
    • /
    • pp.1367-1382
    • /
    • 2020
  • We study rigidity results for the Einstein metrics as the critical points of a family of known quadratic curvature functionals involving the scalar curvature, the Ricci curvature and the Riemannian curvature tensor, characterized by some pointwise inequalities involving the Weyl curvature and the traceless Ricci curvature. Moreover, we also provide a few rigidity results for locally conformally flat critical metrics.

4-DIMENSIONAL CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • 대한수학회보
    • /
    • 제38권3호
    • /
    • pp.551-564
    • /
    • 2001
  • We view Weyl structures as generalizations of Riemannian metrics and study the critical points of geometric functional which involve scalar curvature, defined on the space of Weyl structures on a closed 4-manifold. The main goal here is to provide a framework to analyze critical Weyl structures by defining functionals, discussing function spaces and writing down basic formulas for the equations of critical points.

  • PDF

NIJENHUIS TENSOR FUNCTIONAL ON A SUBSPACE OF METRICS

  • Kang, Bong-Koo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제1권1호
    • /
    • pp.13-18
    • /
    • 1994
  • The study of the integral of the scalar curvature, $A(g)\;=\;{\int}_M\;RdV_9$ as a functional on the set M of all Riemannian metrics of the same total volume on a compact orient able manifold M is now classical, dating back to Hilbert [6] (see also Nagano [8]). Riemannian metric g is a critical point of A(g) if and only if g is an Einstein metric.(omitted)

  • PDF

CRITICAL POINT METRICS OF THE TOTAL SCALAR CURVATURE

  • Chang, Jeong-Wook;Hwang, Seung-Su;Yun, Gab-Jin
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.655-667
    • /
    • 2012
  • In this paper, we deal with a critical point metric of the total scalar curvature on a compact manifold $M$. We prove that if the critical point metric has parallel Ricci tensor, then the manifold is isometric to a standard sphere. Moreover, we show that if an $n$-dimensional Riemannian manifold is a warped product, or has harmonic curvature with non-parallel Ricci tensor, then it cannot be a critical point metric.